Cargando…
CDR1as/miR-7/CKAP4 axis contributes to the pathogenesis of abdominal aortic aneurysm by regulating the proliferation and apoptosis of primary vascular smooth muscle cells
Abdominal aortic aneurysm (AAA) is characterized as dilation of the aortic wall. Dysregulation of vascular smooth muscle cells (VSMCs) can contribute to the development of this phenotype. Circular RNAs and microRNAs (miRNAs) can regulate the proliferation and apoptosis of VSMCs. This present study a...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7185088/ https://www.ncbi.nlm.nih.gov/pubmed/32346440 http://dx.doi.org/10.3892/etm.2020.8622 |
_version_ | 1783526698919133184 |
---|---|
author | Zhao, Feng Chen, Tongyun Jiang, Nan |
author_facet | Zhao, Feng Chen, Tongyun Jiang, Nan |
author_sort | Zhao, Feng |
collection | PubMed |
description | Abdominal aortic aneurysm (AAA) is characterized as dilation of the aortic wall. Dysregulation of vascular smooth muscle cells (VSMCs) can contribute to the development of this phenotype. Circular RNAs and microRNAs (miRNAs) can regulate the proliferation and apoptosis of VSMCs. This present study aimed to identify the mechanisms of action behind the regulation of cerebellar degeneration-related protein 1 antisense RNA (CDR1as)/miRNA (miR)-7 in VSMCs. The expression levels of miR-7 were upregulated, whereas the levels of CDR1as and cytoskeleton-associated protein 4 (CKAP4) were downregulated in aortic specimens obtained from 10 patients who underwent surgery for AAA compared with aortic specimens from 10 control patients who underwent coronary artery bypass surgery. The molecular mechanism of action of CDR1as/miR-7 was investigated in primary VSMCs. The results of Cell Counting kit-8 and cell growth curve assays revealed that overexpression of CDR1as and knockdown of miR-7, increased VSMC proliferation, whereas knockdown of CDR1as and overexpression of miR-7 suppressed VSMC proliferation. In addition, overexpression of CDR1as and knockdown of miR-7, suppressed apoptosis in VSMCs, indicated by the decreased levels of reactive oxygen species (ROS) and lactate dehydrogenase (LDH) activity, whereas knockdown of CDR1as and overexpression of miR-7 exhibited the opposite effects. The results of luciferase reporter and biotin pull-down assays confirmed that CDR1as directly bound to miR-7 and suppressed its expression. Additionally, the CDR1as-induced proliferation and suppressed apoptosis was reversed by the overexpression of miR-7. Furthermore, luciferase reporter, reverse transcription-quantitative PCR and western blot assays revealed that miR-7 directly targeted CKAP4 and suppressed its expression. Additionally, the miR-7-suppressed proliferation and increased ROS and LDH activity were reversed by the overexpression of CKAP4. CDR1as also decreased caspase 3/7 activity, which was reversed by miR-7 mimics. miR-7 increased the activity of caspase 3/7, which was again reversed by the overexpression of CKAP4. Therefore, CDR1as, miR-7 and CKAP4 may act in the same pathway to regulate VSMC proliferation and apoptosis. |
format | Online Article Text |
id | pubmed-7185088 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-71850882020-04-28 CDR1as/miR-7/CKAP4 axis contributes to the pathogenesis of abdominal aortic aneurysm by regulating the proliferation and apoptosis of primary vascular smooth muscle cells Zhao, Feng Chen, Tongyun Jiang, Nan Exp Ther Med Articles Abdominal aortic aneurysm (AAA) is characterized as dilation of the aortic wall. Dysregulation of vascular smooth muscle cells (VSMCs) can contribute to the development of this phenotype. Circular RNAs and microRNAs (miRNAs) can regulate the proliferation and apoptosis of VSMCs. This present study aimed to identify the mechanisms of action behind the regulation of cerebellar degeneration-related protein 1 antisense RNA (CDR1as)/miRNA (miR)-7 in VSMCs. The expression levels of miR-7 were upregulated, whereas the levels of CDR1as and cytoskeleton-associated protein 4 (CKAP4) were downregulated in aortic specimens obtained from 10 patients who underwent surgery for AAA compared with aortic specimens from 10 control patients who underwent coronary artery bypass surgery. The molecular mechanism of action of CDR1as/miR-7 was investigated in primary VSMCs. The results of Cell Counting kit-8 and cell growth curve assays revealed that overexpression of CDR1as and knockdown of miR-7, increased VSMC proliferation, whereas knockdown of CDR1as and overexpression of miR-7 suppressed VSMC proliferation. In addition, overexpression of CDR1as and knockdown of miR-7, suppressed apoptosis in VSMCs, indicated by the decreased levels of reactive oxygen species (ROS) and lactate dehydrogenase (LDH) activity, whereas knockdown of CDR1as and overexpression of miR-7 exhibited the opposite effects. The results of luciferase reporter and biotin pull-down assays confirmed that CDR1as directly bound to miR-7 and suppressed its expression. Additionally, the CDR1as-induced proliferation and suppressed apoptosis was reversed by the overexpression of miR-7. Furthermore, luciferase reporter, reverse transcription-quantitative PCR and western blot assays revealed that miR-7 directly targeted CKAP4 and suppressed its expression. Additionally, the miR-7-suppressed proliferation and increased ROS and LDH activity were reversed by the overexpression of CKAP4. CDR1as also decreased caspase 3/7 activity, which was reversed by miR-7 mimics. miR-7 increased the activity of caspase 3/7, which was again reversed by the overexpression of CKAP4. Therefore, CDR1as, miR-7 and CKAP4 may act in the same pathway to regulate VSMC proliferation and apoptosis. D.A. Spandidos 2020-06 2020-03-23 /pmc/articles/PMC7185088/ /pubmed/32346440 http://dx.doi.org/10.3892/etm.2020.8622 Text en Copyright: © Zhao et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Zhao, Feng Chen, Tongyun Jiang, Nan CDR1as/miR-7/CKAP4 axis contributes to the pathogenesis of abdominal aortic aneurysm by regulating the proliferation and apoptosis of primary vascular smooth muscle cells |
title | CDR1as/miR-7/CKAP4 axis contributes to the pathogenesis of abdominal aortic aneurysm by regulating the proliferation and apoptosis of primary vascular smooth muscle cells |
title_full | CDR1as/miR-7/CKAP4 axis contributes to the pathogenesis of abdominal aortic aneurysm by regulating the proliferation and apoptosis of primary vascular smooth muscle cells |
title_fullStr | CDR1as/miR-7/CKAP4 axis contributes to the pathogenesis of abdominal aortic aneurysm by regulating the proliferation and apoptosis of primary vascular smooth muscle cells |
title_full_unstemmed | CDR1as/miR-7/CKAP4 axis contributes to the pathogenesis of abdominal aortic aneurysm by regulating the proliferation and apoptosis of primary vascular smooth muscle cells |
title_short | CDR1as/miR-7/CKAP4 axis contributes to the pathogenesis of abdominal aortic aneurysm by regulating the proliferation and apoptosis of primary vascular smooth muscle cells |
title_sort | cdr1as/mir-7/ckap4 axis contributes to the pathogenesis of abdominal aortic aneurysm by regulating the proliferation and apoptosis of primary vascular smooth muscle cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7185088/ https://www.ncbi.nlm.nih.gov/pubmed/32346440 http://dx.doi.org/10.3892/etm.2020.8622 |
work_keys_str_mv | AT zhaofeng cdr1asmir7ckap4axiscontributestothepathogenesisofabdominalaorticaneurysmbyregulatingtheproliferationandapoptosisofprimaryvascularsmoothmusclecells AT chentongyun cdr1asmir7ckap4axiscontributestothepathogenesisofabdominalaorticaneurysmbyregulatingtheproliferationandapoptosisofprimaryvascularsmoothmusclecells AT jiangnan cdr1asmir7ckap4axiscontributestothepathogenesisofabdominalaorticaneurysmbyregulatingtheproliferationandapoptosisofprimaryvascularsmoothmusclecells |