Cargando…
The utility of LASSO-based models for real time forecasts of endemic infectious diseases: A cross country comparison
INTRODUCTION: Accurate and timely prediction for endemic infectious diseases is vital for public health agencies to plan and carry out any control methods at an early stage of disease outbreaks. Climatic variables has been identified as important predictors in models for infectious disease forecasts...
Autores principales: | Chen, Yirong, Chu, Collins Wenhan, Chen, Mark I.C., Cook, Alex R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7185473/ https://www.ncbi.nlm.nih.gov/pubmed/29496631 http://dx.doi.org/10.1016/j.jbi.2018.02.014 |
Ejemplares similares
-
Neighbourhood level real-time forecasting of dengue cases in tropical urban Singapore
por: Chen, Yirong, et al.
Publicado: (2018) -
Forecasting malaria in a highly endemic country using environmental and clinical predictors
por: Zinszer, Kate, et al.
Publicado: (2015) -
Forecasting the Endemic/Epidemic Transition in COVID-19 in Some Countries: Influence of the Vaccination
por: Waku, Jules, et al.
Publicado: (2023) -
LassoProt: server to analyze biopolymers with lassos
por: Dabrowski-Tumanski, Pawel, et al.
Publicado: (2016) -
Real-time forecasting of infectious disease dynamics with a stochastic semi-mechanistic model
por: Funk, Sebastian, et al.
Publicado: (2018)