Cargando…

Biochemical principles and inhibitors to interfere with viral capping pathways

Messenger RNAs are decorated by a cap structure, which is essential for their translation into proteins. Many viruses have developed strategies in order to cap their mRNAs. The cap is either synthetized by a subset of viral or cellular enzymes, or stolen from capped cellular mRNAs by viral endonucle...

Descripción completa

Detalles Bibliográficos
Autores principales: Decroly, Etienne, Canard, Bruno
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7185569/
https://www.ncbi.nlm.nih.gov/pubmed/28527860
http://dx.doi.org/10.1016/j.coviro.2017.04.003
Descripción
Sumario:Messenger RNAs are decorated by a cap structure, which is essential for their translation into proteins. Many viruses have developed strategies in order to cap their mRNAs. The cap is either synthetized by a subset of viral or cellular enzymes, or stolen from capped cellular mRNAs by viral endonucleases (‘cap-snatching’). Reverse genetic studies provide evidence that inhibition of viral enzymes belonging to the capping pathway leads to inhibition of virus replication. The replication defect results from reduced protein synthesis as well as from detection of incompletely capped RNAs by cellular innate immunity sensors. Thus, it is now admitted that capping enzymes are validated antiviral targets, as their inhibition will support an antiviral response in addition to the attenuation of viral mRNA translation. In this review, we describe the different viral enzymes involved in mRNA capping together with relevant inhibitors, and their biochemical features useful in inhibitor discovery.