Cargando…

Sleep-disordered breathing does not impact maternal outcomes in women with hypertensive disorders of pregnancy

OBJECTIVE: Sleep-disordered breathing (SDB) is characterised by intermittent hypoxemia, sympathetic activation and widespread endothelial dysfunction, sharing pathophysiologic features with the hypertensive disorders of pregnancy. We sought to determine whether coexisting SDB would adversely impact...

Descripción completa

Detalles Bibliográficos
Autores principales: Wilson, Danielle L., Howard, Mark E., Fung, Alison M., O’Donoghue, Fergal J., Barnes, Maree, Lappas, Martha, Walker, Susan P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7185691/
https://www.ncbi.nlm.nih.gov/pubmed/32339208
http://dx.doi.org/10.1371/journal.pone.0232287
Descripción
Sumario:OBJECTIVE: Sleep-disordered breathing (SDB) is characterised by intermittent hypoxemia, sympathetic activation and widespread endothelial dysfunction, sharing pathophysiologic features with the hypertensive disorders of pregnancy. We sought to determine whether coexisting SDB would adversely impact the outcomes of women with gestational hypertension (GH) and preeclampsia (PE), and healthy matched controls. STUDY DESIGN: Women diagnosed with GH or PE along with BMI- and gestation-matched normotensive controls underwent polysomnography in late pregnancy to establish the presence or absence of SDB (RDI ≥ 5). Clinical outcomes of hypertensive disease severity were compared between groups, and venous blood samples were taken in the third trimester and at delivery to examine for any impact of SDB on the anti-angiogenic markers of PE. RESULTS: Data was available for 17 women with PE, 24 women with GH and 44 controls. SDB was diagnosed in 41% of the PE group, 63% of the GH group and 39% of the control group. Women with PE and co-existing SDB did not have worse outcomes in terms of gestation at diagnosis of PE (SDB = 29.1 (25.9, 32.1) weeks vs. no SDB = 32.0 (29.0, 33.9), p = n.s.) and days between diagnosis of PE and delivery (SDB = 20.0 (4.0, 35.0) days vs. no SDB = 10.5 (9.0, 14.0), p = n.s.). There were also no differences in severity of hypertension, antihypertensive treatment and biochemical, haematological and anti-angiogenic markers of PE between SDB and no SDB groups. Similar results were observed among women with GH. Healthy control women with SDB were no more likely to develop a hypertensive disorder of pregnancy in the later stages of pregnancy (SDB = 5.9% vs. no SDB = 7.4%, p = n.s.). Increasing the threshold for diagnosis of SDB to RDI ≥ 15 did not unmask a worse prognosis. CONCLUSION: The presence of SDB during pregnancy did not worsen the disease course of GH or PE, and was not associated with high blood pressure or anti-angiogenic markers of hypertensive disease amongst healthy pregnant women. Given the numerous reports of the relationship between SDB and diagnosis of hypertensive disorders of pregnancy, it appears more work is required to distinguish causal, versus confounding, pathways.