Cargando…

Yeast synaptobrevin, Snc1, engages distinct routes of postendocytic recycling mediated by a sorting nexin, Rcy1-COPI, and retromer

The budding yeast v-SNARE, Snc1, mediates fusion of exocytic vesicles to the plasma membrane (PM) and is subsequently recycled back to the Golgi. Postendocytic recycling of Snc1 requires a phospholipid flippase (Drs2-Cdc50), an F-box protein (Rcy1), a sorting nexin (Snx4-Atg20), and the COPI coat co...

Descripción completa

Detalles Bibliográficos
Autores principales: Best, Jordan T., Xu, Peng, McGuire, Jack G., Leahy, Shannon N., Graham, Todd R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7185969/
https://www.ncbi.nlm.nih.gov/pubmed/32074001
http://dx.doi.org/10.1091/mbc.E19-05-0290
Descripción
Sumario:The budding yeast v-SNARE, Snc1, mediates fusion of exocytic vesicles to the plasma membrane (PM) and is subsequently recycled back to the Golgi. Postendocytic recycling of Snc1 requires a phospholipid flippase (Drs2-Cdc50), an F-box protein (Rcy1), a sorting nexin (Snx4-Atg20), and the COPI coat complex. A portion of the endocytic tracer FM4-64 is also recycled back to the PM after internalization. However, the relationship between Snx4, Drs2, Rcy1, and COPI in recycling Snc1 or FM4-64 is unclear. Here we show that rcy1∆ and drs2∆ single mutants, or a COPI mutant deficient in ubiquitin binding, display a defect in recycling FM4-64 while snx4∆ cells recycle FM4-64 normally. The addition of latrunculin A to acutely inhibit endocytosis shows that rcy1∆ and snx4∆ single mutants retain the ability to recycle Snc1, but a snx4∆rcy1∆ mutant substantially blocks export. Additional deletion of a retromer subunit completely eliminates recycling of Snc1 in the triple mutant (snx4∆rcy1∆vps35∆). A minor role for retromer in Snc1 recycling can also be observed in single and double mutants harboring vps35∆. These data support the existence of three distinct and parallel recycling pathways mediated by Drs2/Rcy1/COPI, Snx4-Atg20, and retromer that retrieve an exocytic v-SNARE from the endocytic pathway to the Golgi.