Cargando…
How Far Will Clinical Application of AI Applications Advance for Colorectal Cancer Diagnosis?
Integrating artificial intelligence (AI) applications into colonoscopy practice is being accelerated as deep learning technologies emerge. In this field, most of the preceding research has focused on polyp detection and characterization, which can mitigate inherent human errors accompanying colonosc...
Autores principales: | Mori, Yuichi, Kudo, Shin-ei, Misawa, Masashi, Takeda, Kenichi, Kudo, Toyoki, Itoh, Hayato, Oda, Masahiro, Mori, Kensaku |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Japan Society of Coloproctology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7186008/ https://www.ncbi.nlm.nih.gov/pubmed/32346642 http://dx.doi.org/10.23922/jarc.2019-045 |
Ejemplares similares
-
Stable polyp-scene classification via subsampling and residual learning from an imbalanced large dataset
por: Itoh, Hayato, et al.
Publicado: (2019) -
Artificial intelligence-assisted colonic endocytoscopy for cancer recognition: a multicenter study
por: Mori, Yuichi, et al.
Publicado: (2021) -
Comparison of the endocytoscopic and clinicopathologic features of colorectal neoplasms
por: Takeda, Kenichi, et al.
Publicado: (2016) -
Simultaneous detection and characterization of diminutive polyps with the use of artificial intelligence during colonoscopy
por: Mori, Yuichi, et al.
Publicado: (2019) -
Endocytoscopic findings of colorectal neuroendocrine tumors (with video)
por: Takeda, Kenichi, et al.
Publicado: (2018)