Cargando…
Predicting the Disease Genes of Multiple Sclerosis Based on Network Representation Learning
Multiple sclerosis (MS) is an autoimmune disease for which it is difficult to find exact disease-related genes. Effectively identifying disease-related genes would contribute to improving the treatment and diagnosis of multiple sclerosis. Current methods for identifying disease-related genes mainly...
Autores principales: | Liu, Haijie, Guan, Jiaojiao, Li, He, Bao, Zhijie, Wang, Qingmei, Luo, Xun, Xue, Hansheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7186413/ https://www.ncbi.nlm.nih.gov/pubmed/32373160 http://dx.doi.org/10.3389/fgene.2020.00328 |
Ejemplares similares
-
Discovering Cerebral Ischemic Stroke Associated Genes Based on Network Representation Learning
por: Liu, Haijie, et al.
Publicado: (2021) -
Discovering miRNAs Associated With Multiple Sclerosis Based on Network Representation Learning and Deep Learning Methods
por: Sun, Xiaoping, et al.
Publicado: (2022) -
Label-free Quantitative Proteomic Analysis of Cerebrospinal Fluid and Serum in Patients With Relapse-Remitting Multiple Sclerosis
por: Liu, Haijie, et al.
Publicado: (2022) -
Prediction of potential small molecule−miRNA associations based on heterogeneous network representation learning
por: Li, Jianwei, et al.
Publicado: (2022) -
Genome-wide Identification and Analysis of Splicing QTLs in Multiple Sclerosis by RNA-Seq Data
por: He, Yijie, et al.
Publicado: (2021)