Cargando…
Indexing Mental Workload During Simulated Air Traffic Control Tasks by Means of Dual Frequency Head Maps
In our digitized society, advanced information and communication technology and highly interactive work environments impose high demands on cognitive capacity. Optimal workload conditions are important for assuring employee's health and safety of other persons. This is particularly relevant in...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7186426/ https://www.ncbi.nlm.nih.gov/pubmed/32372970 http://dx.doi.org/10.3389/fphys.2020.00300 |
_version_ | 1783526947048914944 |
---|---|
author | Radüntz, Thea Fürstenau, Norbert Mühlhausen, Thorsten Meffert, Beate |
author_facet | Radüntz, Thea Fürstenau, Norbert Mühlhausen, Thorsten Meffert, Beate |
author_sort | Radüntz, Thea |
collection | PubMed |
description | In our digitized society, advanced information and communication technology and highly interactive work environments impose high demands on cognitive capacity. Optimal workload conditions are important for assuring employee's health and safety of other persons. This is particularly relevant in safety-critical occupations, such as air traffic control. For measuring mental workload using the EEG, we have developed the method of Dual Frequency Head Maps (DFHM). The method was tested and validated already under laboratory conditions. However, validation of the method regarding reliability and reproducibility of results under realistic settings and real world scenarios was still required. In our study, we examined 21 air traffic controllers during arrival management tasks. Mental workload variations were achieved by simulation scenarios with different number of aircraft and the occurrence of a priority-flight request as an exceptional event. The workload was assessed using the EEG-based DFHM-workload index and instantaneous self-assessment questionnaire. The DFHM-workload index gave stable results with highly significant correlations between scenarios with similar traffic-load conditions (r between 0.671 and 0.809, p ≤ 0.001). For subjects reporting that they experienced workload variation between the different scenarios, the DFHM-workload index yielded significant differences between traffic-load levels and priority-flight request conditions. For subjects who did not report to experience workload variations between the scenarios, the DFHM-workload index did not yield any significant differences for any of the factors. We currently conclude that the DFHM-workload index reveals potential for applications outside the laboratory and yields stable results without retraining of the classifiers neither regarding new subjects nor new tasks. |
format | Online Article Text |
id | pubmed-7186426 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-71864262020-05-05 Indexing Mental Workload During Simulated Air Traffic Control Tasks by Means of Dual Frequency Head Maps Radüntz, Thea Fürstenau, Norbert Mühlhausen, Thorsten Meffert, Beate Front Physiol Physiology In our digitized society, advanced information and communication technology and highly interactive work environments impose high demands on cognitive capacity. Optimal workload conditions are important for assuring employee's health and safety of other persons. This is particularly relevant in safety-critical occupations, such as air traffic control. For measuring mental workload using the EEG, we have developed the method of Dual Frequency Head Maps (DFHM). The method was tested and validated already under laboratory conditions. However, validation of the method regarding reliability and reproducibility of results under realistic settings and real world scenarios was still required. In our study, we examined 21 air traffic controllers during arrival management tasks. Mental workload variations were achieved by simulation scenarios with different number of aircraft and the occurrence of a priority-flight request as an exceptional event. The workload was assessed using the EEG-based DFHM-workload index and instantaneous self-assessment questionnaire. The DFHM-workload index gave stable results with highly significant correlations between scenarios with similar traffic-load conditions (r between 0.671 and 0.809, p ≤ 0.001). For subjects reporting that they experienced workload variation between the different scenarios, the DFHM-workload index yielded significant differences between traffic-load levels and priority-flight request conditions. For subjects who did not report to experience workload variations between the scenarios, the DFHM-workload index did not yield any significant differences for any of the factors. We currently conclude that the DFHM-workload index reveals potential for applications outside the laboratory and yields stable results without retraining of the classifiers neither regarding new subjects nor new tasks. Frontiers Media S.A. 2020-04-21 /pmc/articles/PMC7186426/ /pubmed/32372970 http://dx.doi.org/10.3389/fphys.2020.00300 Text en Copyright © 2020 Radüntz, Fürstenau, Mühlhausen and Meffert. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Physiology Radüntz, Thea Fürstenau, Norbert Mühlhausen, Thorsten Meffert, Beate Indexing Mental Workload During Simulated Air Traffic Control Tasks by Means of Dual Frequency Head Maps |
title | Indexing Mental Workload During Simulated Air Traffic Control Tasks by Means of Dual Frequency Head Maps |
title_full | Indexing Mental Workload During Simulated Air Traffic Control Tasks by Means of Dual Frequency Head Maps |
title_fullStr | Indexing Mental Workload During Simulated Air Traffic Control Tasks by Means of Dual Frequency Head Maps |
title_full_unstemmed | Indexing Mental Workload During Simulated Air Traffic Control Tasks by Means of Dual Frequency Head Maps |
title_short | Indexing Mental Workload During Simulated Air Traffic Control Tasks by Means of Dual Frequency Head Maps |
title_sort | indexing mental workload during simulated air traffic control tasks by means of dual frequency head maps |
topic | Physiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7186426/ https://www.ncbi.nlm.nih.gov/pubmed/32372970 http://dx.doi.org/10.3389/fphys.2020.00300 |
work_keys_str_mv | AT raduntzthea indexingmentalworkloadduringsimulatedairtrafficcontroltasksbymeansofdualfrequencyheadmaps AT furstenaunorbert indexingmentalworkloadduringsimulatedairtrafficcontroltasksbymeansofdualfrequencyheadmaps AT muhlhausenthorsten indexingmentalworkloadduringsimulatedairtrafficcontroltasksbymeansofdualfrequencyheadmaps AT meffertbeate indexingmentalworkloadduringsimulatedairtrafficcontroltasksbymeansofdualfrequencyheadmaps |