Cargando…
Electron Density and Biologically Effective Dose (BED) Radiomics-Based Machine Learning Models to Predict Late Radiation-Induced Subcutaneous Fibrosis
Purpose: to predict the occurrence of late subcutaneous radiation induced fibrosis (RIF) after partial breast irradiation (PBI) for breast carcinoma by using machine learning (ML) models and radiomic features from 3D Biologically Effective Dose (3D-BED) and Relative Electron Density (3D-RED). Method...
Autores principales: | Avanzo, Michele, Pirrone, Giovanni, Vinante, Lorenzo, Caroli, Angela, Stancanello, Joseph, Drigo, Annalisa, Massarut, Samuele, Mileto, Mario, Urbani, Martina, Trovo, Marco, el Naqa, Issam, De Paoli, Antonino, Sartor, Giovanna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7186445/ https://www.ncbi.nlm.nih.gov/pubmed/32373520 http://dx.doi.org/10.3389/fonc.2020.00490 |
Ejemplares similares
-
Seven fractions to deliver partial breast irradiation: the toxicity is Low
por: Trovo, Marco, et al.
Publicado: (2017) -
Radiomic and radiogenomic modeling for radiotherapy: strategies, pitfalls, and challenges
por: Coates, James T. T., et al.
Publicado: (2021) -
Current status of Radiomics for cancer management: Challenges versus opportunities for clinical practice
por: Li, Hua, et al.
Publicado: (2020) -
Predicting Local Failure after Partial Prostate Re-Irradiation Using a Dosiomic-Based Machine Learning Model
por: Pirrone, Giovanni, et al.
Publicado: (2022) -
Tumor response prediction in (90)Y radioembolization with PET-based radiomics features and absorbed dose metrics
por: Wei, Lise, et al.
Publicado: (2020)