Cargando…

Donor-derived hypouricemia in irrelevant recipients caused by kidney transplantation

BACKGROUND: Hereditary renal hypouricemia (HRH) is a genetically heterogenetic disease. Patients with HRH are almost asymptomatic; but some may experience exercise-induced acute kidney injury (EAKI) and nephrolithiasis which may bring concerns regarding the risk-benefit ratio as marginal kidney dono...

Descripción completa

Detalles Bibliográficos
Autores principales: Teng, Lisha, Zhang, Yanling, Ye, Luxi, Lv, Junhao, Mao, Youying, Schneider, Ronen, Chen, Jianghua, Jiang, Hong, Wu, Jianyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7186701/
https://www.ncbi.nlm.nih.gov/pubmed/32355774
http://dx.doi.org/10.21037/atm.2020.02.140
Descripción
Sumario:BACKGROUND: Hereditary renal hypouricemia (HRH) is a genetically heterogenetic disease. Patients with HRH are almost asymptomatic; but some may experience exercise-induced acute kidney injury (EAKI) and nephrolithiasis which may bring concerns regarding the risk-benefit ratio as marginal kidney donors. This study examined the pathogenic mutations of hypouricemia in two recipients after receiving kidney transplantation, providing preliminary evidence for the mechanism of hypouricemia. METHODS: Two participants underwent detailed biochemical examinations. DNA and RNA were extracted from transplant specimens for sequencing. The whole-genome sequencing and polymerase chain reaction (PCR) amplification were performed to confirm the pathogenic genes. Functional effects of mutant proteins were verified by bioinformatics analysis. RNA-sequencing (RNA-seq) was used to study the transcriptome of hypouricemia. RESULTS: Both of the recipients had the low serum uric acid (UA) (45–65 µmol/l), high fraction excretion of UA (44% and 75%) and an increase in the UA clearance (35.9 and 73.3 mL/min) with a functioning graft. The sequencing analyses revealed 7 kinds of potential mutational genes in this case, two novel mutations p.R89H and p.L181V in SLC22A12 gene which were revealed by bioinformatics could be pathogenic in nature. CONCLUSIONS: Two novel mutations of SLC22A12 were identified. Preliminary functional analysis revealed a potential deleterious effect of these mutations in the grafts derived from the donor and sequencing analysis expand the molecular mechanisms of renal hypouricemia.