Cargando…
The Biological Activity Research of the Nano-Drugs Based on 5-Fluorouracil-Modified Quantum Dots
PURPOSE: Over the past decades, quantum dots (QDs) have shown the broad application in diverse fields, especially in intracellular probing and drug delivery, due to their high fluorescence intensity, long fluorescence lifetime, strong light-resistant bleaching ability, and strong light stability. Th...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7186888/ https://www.ncbi.nlm.nih.gov/pubmed/32425520 http://dx.doi.org/10.2147/IJN.S244693 |
_version_ | 1783527052963479552 |
---|---|
author | Qiao, Lu-Lu Yao, Wen-Jing Zhang, Zhi-Qiang Yang, Xiaojing Zhao, Mei-Xia |
author_facet | Qiao, Lu-Lu Yao, Wen-Jing Zhang, Zhi-Qiang Yang, Xiaojing Zhao, Mei-Xia |
author_sort | Qiao, Lu-Lu |
collection | PubMed |
description | PURPOSE: Over the past decades, quantum dots (QDs) have shown the broad application in diverse fields, especially in intracellular probing and drug delivery, due to their high fluorescence intensity, long fluorescence lifetime, strong light-resistant bleaching ability, and strong light stability. Therefore, we explore a kind of therapeutic potential against cancer with fluorescent imaging. METHODS: In the current study, a new type of QDs (QDs@L-Cys-TAEA-5-FUA) capped with L-cysteine (L-Cys) and tris(2-aminoethyl)amine (TAEA) ligands, and conjugated with 5-fluorouracil-1-acetic acid (5-FUA) has been synthesized. Ligands were characterized by electrospray ionization mass spectrometry and H-nuclear magnetic resonance ((1)H NMR) spectroscopy. The modified QDs were characterized by transmission electron microscopy, ultraviolet and visible spectrophotometry (UV-Vis), and fluorescence microscopy. And the biological activity of modified QDs was explored by using MTT assay with HeLa, SMMC-7721 HepG2, and QSG-7701 cells. The fluorescence imaging of modified QDs was obtained by fluorescence microscope. RESULTS: The modified QDs are of controllable sizes in the range of 4–5 nm and they possess strong optical emission properties. UV-Vis and fluorescence spectra demonstrated that the L-Cys-TAEA-5-FUA was successfully incorporated into QD nanoparticles. The MTT results demonstrated that L-Cys-TAEA-5-FUA modified QDs could efficiently inhibit the proliferation of cancer cells as compared to the normal cells, illustrating their antitumor efficacy. The mechanistic studies revealed that the effective internalization of modified QDs inside cancer cells could inhibit their proliferation, through excessive production of intracellular reactive oxygen species, leading to apoptosis process. CONCLUSION: The present study suggests that modified QDs can enter cells efficiently and could be employed as therapeutic agents for the treatment of various types of cancers with fluorescent imaging. |
format | Online Article Text |
id | pubmed-7186888 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-71868882020-05-18 The Biological Activity Research of the Nano-Drugs Based on 5-Fluorouracil-Modified Quantum Dots Qiao, Lu-Lu Yao, Wen-Jing Zhang, Zhi-Qiang Yang, Xiaojing Zhao, Mei-Xia Int J Nanomedicine Original Research PURPOSE: Over the past decades, quantum dots (QDs) have shown the broad application in diverse fields, especially in intracellular probing and drug delivery, due to their high fluorescence intensity, long fluorescence lifetime, strong light-resistant bleaching ability, and strong light stability. Therefore, we explore a kind of therapeutic potential against cancer with fluorescent imaging. METHODS: In the current study, a new type of QDs (QDs@L-Cys-TAEA-5-FUA) capped with L-cysteine (L-Cys) and tris(2-aminoethyl)amine (TAEA) ligands, and conjugated with 5-fluorouracil-1-acetic acid (5-FUA) has been synthesized. Ligands were characterized by electrospray ionization mass spectrometry and H-nuclear magnetic resonance ((1)H NMR) spectroscopy. The modified QDs were characterized by transmission electron microscopy, ultraviolet and visible spectrophotometry (UV-Vis), and fluorescence microscopy. And the biological activity of modified QDs was explored by using MTT assay with HeLa, SMMC-7721 HepG2, and QSG-7701 cells. The fluorescence imaging of modified QDs was obtained by fluorescence microscope. RESULTS: The modified QDs are of controllable sizes in the range of 4–5 nm and they possess strong optical emission properties. UV-Vis and fluorescence spectra demonstrated that the L-Cys-TAEA-5-FUA was successfully incorporated into QD nanoparticles. The MTT results demonstrated that L-Cys-TAEA-5-FUA modified QDs could efficiently inhibit the proliferation of cancer cells as compared to the normal cells, illustrating their antitumor efficacy. The mechanistic studies revealed that the effective internalization of modified QDs inside cancer cells could inhibit their proliferation, through excessive production of intracellular reactive oxygen species, leading to apoptosis process. CONCLUSION: The present study suggests that modified QDs can enter cells efficiently and could be employed as therapeutic agents for the treatment of various types of cancers with fluorescent imaging. Dove 2020-04-23 /pmc/articles/PMC7186888/ /pubmed/32425520 http://dx.doi.org/10.2147/IJN.S244693 Text en © 2020 Qiao et al. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Qiao, Lu-Lu Yao, Wen-Jing Zhang, Zhi-Qiang Yang, Xiaojing Zhao, Mei-Xia The Biological Activity Research of the Nano-Drugs Based on 5-Fluorouracil-Modified Quantum Dots |
title | The Biological Activity Research of the Nano-Drugs Based on 5-Fluorouracil-Modified Quantum Dots |
title_full | The Biological Activity Research of the Nano-Drugs Based on 5-Fluorouracil-Modified Quantum Dots |
title_fullStr | The Biological Activity Research of the Nano-Drugs Based on 5-Fluorouracil-Modified Quantum Dots |
title_full_unstemmed | The Biological Activity Research of the Nano-Drugs Based on 5-Fluorouracil-Modified Quantum Dots |
title_short | The Biological Activity Research of the Nano-Drugs Based on 5-Fluorouracil-Modified Quantum Dots |
title_sort | biological activity research of the nano-drugs based on 5-fluorouracil-modified quantum dots |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7186888/ https://www.ncbi.nlm.nih.gov/pubmed/32425520 http://dx.doi.org/10.2147/IJN.S244693 |
work_keys_str_mv | AT qiaolulu thebiologicalactivityresearchofthenanodrugsbasedon5fluorouracilmodifiedquantumdots AT yaowenjing thebiologicalactivityresearchofthenanodrugsbasedon5fluorouracilmodifiedquantumdots AT zhangzhiqiang thebiologicalactivityresearchofthenanodrugsbasedon5fluorouracilmodifiedquantumdots AT yangxiaojing thebiologicalactivityresearchofthenanodrugsbasedon5fluorouracilmodifiedquantumdots AT zhaomeixia thebiologicalactivityresearchofthenanodrugsbasedon5fluorouracilmodifiedquantumdots AT qiaolulu biologicalactivityresearchofthenanodrugsbasedon5fluorouracilmodifiedquantumdots AT yaowenjing biologicalactivityresearchofthenanodrugsbasedon5fluorouracilmodifiedquantumdots AT zhangzhiqiang biologicalactivityresearchofthenanodrugsbasedon5fluorouracilmodifiedquantumdots AT yangxiaojing biologicalactivityresearchofthenanodrugsbasedon5fluorouracilmodifiedquantumdots AT zhaomeixia biologicalactivityresearchofthenanodrugsbasedon5fluorouracilmodifiedquantumdots |