Cargando…
Strategies for reducing per‐sample costs in target capture sequencing for phylogenomics and population genomics in plants
The reduced cost of high‐throughput sequencing and the development of gene sets with wide phylogenetic applicability has led to the rise of sequence capture methods as a plausible platform for both phylogenomics and population genomics in plants. An important consideration in large targeted sequenci...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7186906/ https://www.ncbi.nlm.nih.gov/pubmed/32351798 http://dx.doi.org/10.1002/aps3.11337 |
_version_ | 1783527057300389888 |
---|---|
author | Hale, Haley Gardner, Elliot M. Viruel, Juan Pokorny, Lisa Johnson, Matthew G. |
author_facet | Hale, Haley Gardner, Elliot M. Viruel, Juan Pokorny, Lisa Johnson, Matthew G. |
author_sort | Hale, Haley |
collection | PubMed |
description | The reduced cost of high‐throughput sequencing and the development of gene sets with wide phylogenetic applicability has led to the rise of sequence capture methods as a plausible platform for both phylogenomics and population genomics in plants. An important consideration in large targeted sequencing projects is the per‐sample cost, which can be inflated when using off‐the‐shelf kits or reagents not purchased in bulk. Here, we discuss methods to reduce per‐sample costs in high‐throughput targeted sequencing projects. We review the minimal equipment and consumable requirements for targeted sequencing while comparing several alternatives to reduce bulk costs in DNA extraction, library preparation, target enrichment, and sequencing. We consider how each of the workflow alterations may be affected by DNA quality (e.g., fresh vs. herbarium tissue), genome size, and the phylogenetic scale of the project. We provide a cost calculator for researchers considering targeted sequencing to use when designing projects, and identify challenges for future development of low‐cost sequencing in non‐model plant systems. |
format | Online Article Text |
id | pubmed-7186906 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-71869062020-04-29 Strategies for reducing per‐sample costs in target capture sequencing for phylogenomics and population genomics in plants Hale, Haley Gardner, Elliot M. Viruel, Juan Pokorny, Lisa Johnson, Matthew G. Appl Plant Sci Review Article The reduced cost of high‐throughput sequencing and the development of gene sets with wide phylogenetic applicability has led to the rise of sequence capture methods as a plausible platform for both phylogenomics and population genomics in plants. An important consideration in large targeted sequencing projects is the per‐sample cost, which can be inflated when using off‐the‐shelf kits or reagents not purchased in bulk. Here, we discuss methods to reduce per‐sample costs in high‐throughput targeted sequencing projects. We review the minimal equipment and consumable requirements for targeted sequencing while comparing several alternatives to reduce bulk costs in DNA extraction, library preparation, target enrichment, and sequencing. We consider how each of the workflow alterations may be affected by DNA quality (e.g., fresh vs. herbarium tissue), genome size, and the phylogenetic scale of the project. We provide a cost calculator for researchers considering targeted sequencing to use when designing projects, and identify challenges for future development of low‐cost sequencing in non‐model plant systems. John Wiley and Sons Inc. 2020-04-14 /pmc/articles/PMC7186906/ /pubmed/32351798 http://dx.doi.org/10.1002/aps3.11337 Text en © 2020 Hale et al. Applications in Plant Sciences is published by Wiley Periodicals, Inc. on behalf of the Botanical Society of America This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Hale, Haley Gardner, Elliot M. Viruel, Juan Pokorny, Lisa Johnson, Matthew G. Strategies for reducing per‐sample costs in target capture sequencing for phylogenomics and population genomics in plants |
title | Strategies for reducing per‐sample costs in target capture sequencing for phylogenomics and population genomics in plants |
title_full | Strategies for reducing per‐sample costs in target capture sequencing for phylogenomics and population genomics in plants |
title_fullStr | Strategies for reducing per‐sample costs in target capture sequencing for phylogenomics and population genomics in plants |
title_full_unstemmed | Strategies for reducing per‐sample costs in target capture sequencing for phylogenomics and population genomics in plants |
title_short | Strategies for reducing per‐sample costs in target capture sequencing for phylogenomics and population genomics in plants |
title_sort | strategies for reducing per‐sample costs in target capture sequencing for phylogenomics and population genomics in plants |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7186906/ https://www.ncbi.nlm.nih.gov/pubmed/32351798 http://dx.doi.org/10.1002/aps3.11337 |
work_keys_str_mv | AT halehaley strategiesforreducingpersamplecostsintargetcapturesequencingforphylogenomicsandpopulationgenomicsinplants AT gardnerelliotm strategiesforreducingpersamplecostsintargetcapturesequencingforphylogenomicsandpopulationgenomicsinplants AT virueljuan strategiesforreducingpersamplecostsintargetcapturesequencingforphylogenomicsandpopulationgenomicsinplants AT pokornylisa strategiesforreducingpersamplecostsintargetcapturesequencingforphylogenomicsandpopulationgenomicsinplants AT johnsonmatthewg strategiesforreducingpersamplecostsintargetcapturesequencingforphylogenomicsandpopulationgenomicsinplants |