Cargando…
Supramolecular Fluorescence Resonance Energy Transfer in Nucleobase‐Modified Fluorogenic RNA Aptamers
RNA aptamers form compact tertiary structures and bind their ligands in specific binding sites. Fluorescence‐based strategies reveal information on structure and dynamics of RNA aptamers. Herein, we report the incorporation of the universal emissive nucleobase analog 4‐cyanoindole into the fluorogen...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7187157/ https://www.ncbi.nlm.nih.gov/pubmed/32052536 http://dx.doi.org/10.1002/anie.201916707 |
Sumario: | RNA aptamers form compact tertiary structures and bind their ligands in specific binding sites. Fluorescence‐based strategies reveal information on structure and dynamics of RNA aptamers. Herein, we report the incorporation of the universal emissive nucleobase analog 4‐cyanoindole into the fluorogenic RNA aptamer Chili, and its application as a donor for supramolecular FRET to the bound ligands DMHBI(+) or DMHBO(+). The photophysical properties of the new nucleobase–ligand‐FRET pair revealed structural restraints for the overall RNA aptamer organization and identified nucleotide positions suitable for FRET‐based readout of ligand binding. This strategy is generally suitable for binding‐site mapping and may also be applied for responsive aptamer devices. |
---|