Cargando…
CAAC‐Based Thiele and Schlenk Hydrocarbons
Diradicals have been of tremendous interest for over a century ever since the first reports of p‐ and m‐phenylene‐bridged diphenylmethylradicals in 1904 by Thiele and 1915 by Schlenk. Reported here are the first examples of cyclic(alkyl)(amino)carbene (CAAC) analogues of Thiele's hydrocarbon, a...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7187164/ https://www.ncbi.nlm.nih.gov/pubmed/31960562 http://dx.doi.org/10.1002/anie.201915802 |
Sumario: | Diradicals have been of tremendous interest for over a century ever since the first reports of p‐ and m‐phenylene‐bridged diphenylmethylradicals in 1904 by Thiele and 1915 by Schlenk. Reported here are the first examples of cyclic(alkyl)(amino)carbene (CAAC) analogues of Thiele's hydrocarbon, a Kekulé diradical, and Schlenk's hydrocarbon, a non‐Kekulé diradical, without using CAAC as a precursor. The CAAC analogue of Thiele's hydrocarbon has a singlet ground state, whereas the CAAC analogue of Schlenk's hydrocarbon contains two unpaired electrons. The latter forms a dimer, by an intermolecular double head‐to‐tail dimerization. This straightforward synthetic methodology is modular and can be extended for the generation of redox‐active organic compounds. |
---|