Cargando…
Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO(2) Separation
We present a facile approach to encapsulate functional porous organic cages (POCs) into a robust MOF by an incipient‐wetness impregnation method. Porous cucurbit[6]uril (CB6) cages with high CO(2) affinity were successfully encapsulated into the nanospace of Cr‐based MIL‐101 while retaining the crys...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7187261/ https://www.ncbi.nlm.nih.gov/pubmed/31912916 http://dx.doi.org/10.1002/anie.201916002 |
_version_ | 1783527138087927808 |
---|---|
author | Liang, Jun Nuhnen, Alexander Millan, Simon Breitzke, Hergen Gvilava, Vasily Buntkowsky, Gerd Janiak, Christoph |
author_facet | Liang, Jun Nuhnen, Alexander Millan, Simon Breitzke, Hergen Gvilava, Vasily Buntkowsky, Gerd Janiak, Christoph |
author_sort | Liang, Jun |
collection | PubMed |
description | We present a facile approach to encapsulate functional porous organic cages (POCs) into a robust MOF by an incipient‐wetness impregnation method. Porous cucurbit[6]uril (CB6) cages with high CO(2) affinity were successfully encapsulated into the nanospace of Cr‐based MIL‐101 while retaining the crystal framework, morphology, and high stability of MIL‐101. The encapsulated CB6 amount is controllable. Importantly, as the CB6 molecule with intrinsic micropores is smaller than the inner mesopores of MIL‐101, more affinity sites for CO(2) are created in the resulting CB6@MIL‐101 composites, leading to enhanced CO(2) uptake capacity and CO(2)/N(2), CO(2)/CH(4) separation performance at low pressures. This POC@MOF encapsulation strategy provides a facile route to introduce functional POCs into stable MOFs for various potential applications. |
format | Online Article Text |
id | pubmed-7187261 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-71872612020-04-28 Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO(2) Separation Liang, Jun Nuhnen, Alexander Millan, Simon Breitzke, Hergen Gvilava, Vasily Buntkowsky, Gerd Janiak, Christoph Angew Chem Int Ed Engl Research Articles We present a facile approach to encapsulate functional porous organic cages (POCs) into a robust MOF by an incipient‐wetness impregnation method. Porous cucurbit[6]uril (CB6) cages with high CO(2) affinity were successfully encapsulated into the nanospace of Cr‐based MIL‐101 while retaining the crystal framework, morphology, and high stability of MIL‐101. The encapsulated CB6 amount is controllable. Importantly, as the CB6 molecule with intrinsic micropores is smaller than the inner mesopores of MIL‐101, more affinity sites for CO(2) are created in the resulting CB6@MIL‐101 composites, leading to enhanced CO(2) uptake capacity and CO(2)/N(2), CO(2)/CH(4) separation performance at low pressures. This POC@MOF encapsulation strategy provides a facile route to introduce functional POCs into stable MOFs for various potential applications. John Wiley and Sons Inc. 2020-02-03 2020-04-06 /pmc/articles/PMC7187261/ /pubmed/31912916 http://dx.doi.org/10.1002/anie.201916002 Text en © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Liang, Jun Nuhnen, Alexander Millan, Simon Breitzke, Hergen Gvilava, Vasily Buntkowsky, Gerd Janiak, Christoph Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO(2) Separation |
title | Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO(2) Separation |
title_full | Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO(2) Separation |
title_fullStr | Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO(2) Separation |
title_full_unstemmed | Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO(2) Separation |
title_short | Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO(2) Separation |
title_sort | encapsulation of a porous organic cage into the pores of a metal–organic framework for enhanced co(2) separation |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7187261/ https://www.ncbi.nlm.nih.gov/pubmed/31912916 http://dx.doi.org/10.1002/anie.201916002 |
work_keys_str_mv | AT liangjun encapsulationofaporousorganiccageintotheporesofametalorganicframeworkforenhancedco2separation AT nuhnenalexander encapsulationofaporousorganiccageintotheporesofametalorganicframeworkforenhancedco2separation AT millansimon encapsulationofaporousorganiccageintotheporesofametalorganicframeworkforenhancedco2separation AT breitzkehergen encapsulationofaporousorganiccageintotheporesofametalorganicframeworkforenhancedco2separation AT gvilavavasily encapsulationofaporousorganiccageintotheporesofametalorganicframeworkforenhancedco2separation AT buntkowskygerd encapsulationofaporousorganiccageintotheporesofametalorganicframeworkforenhancedco2separation AT janiakchristoph encapsulationofaporousorganiccageintotheporesofametalorganicframeworkforenhancedco2separation |