Cargando…

Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO(2) Separation

We present a facile approach to encapsulate functional porous organic cages (POCs) into a robust MOF by an incipient‐wetness impregnation method. Porous cucurbit[6]uril (CB6) cages with high CO(2) affinity were successfully encapsulated into the nanospace of Cr‐based MIL‐101 while retaining the crys...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Jun, Nuhnen, Alexander, Millan, Simon, Breitzke, Hergen, Gvilava, Vasily, Buntkowsky, Gerd, Janiak, Christoph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7187261/
https://www.ncbi.nlm.nih.gov/pubmed/31912916
http://dx.doi.org/10.1002/anie.201916002
_version_ 1783527138087927808
author Liang, Jun
Nuhnen, Alexander
Millan, Simon
Breitzke, Hergen
Gvilava, Vasily
Buntkowsky, Gerd
Janiak, Christoph
author_facet Liang, Jun
Nuhnen, Alexander
Millan, Simon
Breitzke, Hergen
Gvilava, Vasily
Buntkowsky, Gerd
Janiak, Christoph
author_sort Liang, Jun
collection PubMed
description We present a facile approach to encapsulate functional porous organic cages (POCs) into a robust MOF by an incipient‐wetness impregnation method. Porous cucurbit[6]uril (CB6) cages with high CO(2) affinity were successfully encapsulated into the nanospace of Cr‐based MIL‐101 while retaining the crystal framework, morphology, and high stability of MIL‐101. The encapsulated CB6 amount is controllable. Importantly, as the CB6 molecule with intrinsic micropores is smaller than the inner mesopores of MIL‐101, more affinity sites for CO(2) are created in the resulting CB6@MIL‐101 composites, leading to enhanced CO(2) uptake capacity and CO(2)/N(2), CO(2)/CH(4) separation performance at low pressures. This POC@MOF encapsulation strategy provides a facile route to introduce functional POCs into stable MOFs for various potential applications.
format Online
Article
Text
id pubmed-7187261
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-71872612020-04-28 Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO(2) Separation Liang, Jun Nuhnen, Alexander Millan, Simon Breitzke, Hergen Gvilava, Vasily Buntkowsky, Gerd Janiak, Christoph Angew Chem Int Ed Engl Research Articles We present a facile approach to encapsulate functional porous organic cages (POCs) into a robust MOF by an incipient‐wetness impregnation method. Porous cucurbit[6]uril (CB6) cages with high CO(2) affinity were successfully encapsulated into the nanospace of Cr‐based MIL‐101 while retaining the crystal framework, morphology, and high stability of MIL‐101. The encapsulated CB6 amount is controllable. Importantly, as the CB6 molecule with intrinsic micropores is smaller than the inner mesopores of MIL‐101, more affinity sites for CO(2) are created in the resulting CB6@MIL‐101 composites, leading to enhanced CO(2) uptake capacity and CO(2)/N(2), CO(2)/CH(4) separation performance at low pressures. This POC@MOF encapsulation strategy provides a facile route to introduce functional POCs into stable MOFs for various potential applications. John Wiley and Sons Inc. 2020-02-03 2020-04-06 /pmc/articles/PMC7187261/ /pubmed/31912916 http://dx.doi.org/10.1002/anie.201916002 Text en © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Research Articles
Liang, Jun
Nuhnen, Alexander
Millan, Simon
Breitzke, Hergen
Gvilava, Vasily
Buntkowsky, Gerd
Janiak, Christoph
Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO(2) Separation
title Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO(2) Separation
title_full Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO(2) Separation
title_fullStr Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO(2) Separation
title_full_unstemmed Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO(2) Separation
title_short Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO(2) Separation
title_sort encapsulation of a porous organic cage into the pores of a metal–organic framework for enhanced co(2) separation
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7187261/
https://www.ncbi.nlm.nih.gov/pubmed/31912916
http://dx.doi.org/10.1002/anie.201916002
work_keys_str_mv AT liangjun encapsulationofaporousorganiccageintotheporesofametalorganicframeworkforenhancedco2separation
AT nuhnenalexander encapsulationofaporousorganiccageintotheporesofametalorganicframeworkforenhancedco2separation
AT millansimon encapsulationofaporousorganiccageintotheporesofametalorganicframeworkforenhancedco2separation
AT breitzkehergen encapsulationofaporousorganiccageintotheporesofametalorganicframeworkforenhancedco2separation
AT gvilavavasily encapsulationofaporousorganiccageintotheporesofametalorganicframeworkforenhancedco2separation
AT buntkowskygerd encapsulationofaporousorganiccageintotheporesofametalorganicframeworkforenhancedco2separation
AT janiakchristoph encapsulationofaporousorganiccageintotheporesofametalorganicframeworkforenhancedco2separation