Cargando…

Synthesis of the 8,19‐Epoxysteroid Eurysterol A

We report the first chemical synthesis of eurysterol A, a cytotoxic and antifungal marine steroidal sulfate with a unique C8−C19 oxy‐bridged cholestane skeleton. After C19 hydroxylation of cholesteryl acetate, used as an inexpensive commercial starting material, the challenging oxidative functionali...

Descripción completa

Detalles Bibliográficos
Autores principales: Taspinar, Ömer, Wilczek, Tobias, Erver, Julian, Breugst, Martin, Neudörfl, Jörg‐Martin, Schmalz, Hans‐Günther
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7187428/
https://www.ncbi.nlm.nih.gov/pubmed/32031278
http://dx.doi.org/10.1002/chem.202000585
Descripción
Sumario:We report the first chemical synthesis of eurysterol A, a cytotoxic and antifungal marine steroidal sulfate with a unique C8−C19 oxy‐bridged cholestane skeleton. After C19 hydroxylation of cholesteryl acetate, used as an inexpensive commercial starting material, the challenging oxidative functionalization of ring B was achieved by two different routes to set up a 5α‐hydroxy‐7‐en‐6‐one moiety. As a key step, an intramolecular oxa‐Michael addition was exploited to close the oxy‐bridge (8β,19‐epoxy unit). DFT calculations show this reversible transformation being exergonic by about −30 kJ mol(−1). Along the optimized (scalable) synthetic sequence, the target natural product was obtained in only 11 steps in 5 % overall yield. In addition, an access to (isomeric) 7β,19‐epoxy steroids with a previously unknown pentacyclic ring system was discovered.