Cargando…
Unsupervised machine learning for exploratory data analysis in imaging mass spectrometry
Imaging mass spectrometry (IMS) is a rapidly advancing molecular imaging modality that can map the spatial distribution of molecules with high chemical specificity. IMS does not require prior tagging of molecular targets and is able to measure a large number of ions concurrently in a single experime...
Autores principales: | Verbeeck, Nico, Caprioli, Richard M., Van de Plas, Raf |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7187435/ https://www.ncbi.nlm.nih.gov/pubmed/31602691 http://dx.doi.org/10.1002/mas.21602 |
Ejemplares similares
-
Automated Anatomical Interpretation of Ion Distributions
in Tissue: Linking Imaging Mass Spectrometry to Curated Atlases
por: Verbeeck, Nico, et al.
Publicado: (2014) -
Fusion of mass spectrometry and microscopy: a multi-modality paradigm for molecular tissue mapping
por: Van de Plas, Raf, et al.
Publicado: (2015) -
Automated biomarker candidate discovery in imaging mass spectrometry data through spatially localized Shapley additive explanations
por: Tideman, Leonoor E.M., et al.
Publicado: (2021) -
Spatially aware clustering of ion images in mass spectrometry imaging data using deep learning
por: Zhang, Wanqiu, et al.
Publicado: (2021) -
Unsupervised machine learning using an imaging mass spectrometry dataset automatically reassembles grey and white matter
por: Nampei, Makoto, et al.
Publicado: (2019)