Cargando…

Invited Article: Emerging soft bioelectronics for cardiac health diagnosis and treatment

Cardiovascular diseases are among the leading causes of death worldwide. Conventional technologies for diagnosing and treating lack the compliance and comfort necessary for those living with life-threatening conditions. Soft electronics presents a promising outlet for conformal, flexible, and stretc...

Descripción completa

Detalles Bibliográficos
Autores principales: Ershad, Faheem, Sim, Kyoseung, Thukral, Anish, Zhang, Yu Shrike, Yu, Cunjiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AIP Publishing LLC 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7187908/
https://www.ncbi.nlm.nih.gov/pubmed/32551188
http://dx.doi.org/10.1063/1.5060270
Descripción
Sumario:Cardiovascular diseases are among the leading causes of death worldwide. Conventional technologies for diagnosing and treating lack the compliance and comfort necessary for those living with life-threatening conditions. Soft electronics presents a promising outlet for conformal, flexible, and stretchable devices that can overcome the mechanical mismatch that is often associated with conventional technologies. Here, we review the various methods in which electronics have been made flexible and stretchable, to better interface with the human body, both externally with the skin and internally with the outer surface of the heart. Then, we review soft, wearable, noninvasive heart monitors designed to be attached to the chest or other parts of the body for mechano-acoustic and electrophysiological sensing. A common method of treatment for various abnormal heart rhythms involves catheter ablation procedures and we review the current soft bioelectronics that can be placed on the balloon or head of the catheter. Cardiac mapping is integral to determine the state of the heart; we discuss the various parameters for sensing aside from electrophysiological sensing, such as temperature, pH, strain, and tactile sensing. Finally, we review the soft devices that harvest energy from the natural and spontaneous beating of the heart by converting its mechanical motion into electrical energy to power implants.