Cargando…
A framework for large-scale mapping of human settlement extent from Sentinel-2 images via fully convolutional neural networks
Human settlement extent (HSE) information is a valuable indicator of world-wide urbanization as well as the resulting human pressure on the natural environment. Therefore, mapping HSE is critical for various environmental issues at local, regional, and even global scales. This paper presents a deep-...
Autores principales: | Qiu, Chunping, Schmitt, Michael, Geiß, Christian, Chen, Tzu-Hsin Karen, Zhu, Xiao Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7188251/ https://www.ncbi.nlm.nih.gov/pubmed/32377033 http://dx.doi.org/10.1016/j.isprsjprs.2020.01.028 |
Ejemplares similares
-
Mapping and Discriminating Rural Settlements Using Gaofen-2 Images and a Fully Convolutional Network
por: Ye, Ziran, et al.
Publicado: (2020) -
Exploring convolutional neural networks and spatial video for on-the-ground mapping in informal settlements
por: Ajayakumar, Jayakrishnan, et al.
Publicado: (2021) -
Deep Convolutional Neural Network for Flood Extent Mapping Using Unmanned Aerial Vehicles Data
por: Gebrehiwot, Asmamaw, et al.
Publicado: (2019) -
Supernovae Detection with Fully Convolutional One-Stage Framework
por: Yin, Kai, et al.
Publicado: (2021) -
Modular Neural Networks with Fully Convolutional Networks for Typhoon-Induced Short-Term Rainfall Predictions
por: Wei, Chih-Chiang, et al.
Publicado: (2021)