Cargando…
Cross-Dataset Variability Problem in EEG Decoding With Deep Learning
Cross-subject variability problems hinder practical usages of Brain-Computer Interfaces. Recently, deep learning has been introduced into the BCI community due to its better generalization and feature representation abilities. However, most studies currently only have validated deep learning models...
Autores principales: | Xu, Lichao, Xu, Minpeng, Ke, Yufeng, An, Xingwei, Liu, Shuang, Ming, Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7188358/ https://www.ncbi.nlm.nih.gov/pubmed/32372929 http://dx.doi.org/10.3389/fnhum.2020.00103 |
Ejemplares similares
-
Decoding Intracranial EEG With Machine Learning: A Systematic Review
por: Mirchi, Nykan, et al.
Publicado: (2022) -
Impact of dataset size and long-term ECoG-based BCI usage on deep learning decoders performance
por: Śliwowski, Maciej, et al.
Publicado: (2023) -
Machine Learning Approaches for MDD Detection and Emotion Decoding Using EEG Signals
por: Duan, Lijuan, et al.
Publicado: (2020) -
Incorporation of Multiple-Days Information to Improve the Generalization of EEG-Based Emotion Recognition Over Time
por: Liu, Shuang, et al.
Publicado: (2018) -
A State-of-the-Art Review of EEG-Based Imagined Speech Decoding
por: Lopez-Bernal, Diego, et al.
Publicado: (2022)