Cargando…
DeepSurvNet: deep survival convolutional network for brain cancer survival rate classification based on histopathological images
Histopathological whole slide images of haematoxylin and eosin (H&E)-stained biopsies contain valuable information with relation to cancer disease and its clinical outcomes. Still, there are no highly accurate automated methods to correlate histolopathological images with brain cancer patients’...
Autores principales: | Zadeh Shirazi, Amin, Fornaciari, Eric, Bagherian, Narjes Sadat, Ebert, Lisa M., Koszyca, Barbara, Gomez, Guillermo A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7188709/ https://www.ncbi.nlm.nih.gov/pubmed/32124225 http://dx.doi.org/10.1007/s11517-020-02147-3 |
Ejemplares similares
-
A deep convolutional neural network for segmentation of whole-slide pathology images identifies novel tumour cell-perivascular niche interactions that are associated with poor survival in glioblastoma
por: Zadeh Shirazi, Amin, et al.
Publicado: (2021) -
SurvNet: A Novel Deep Neural Network for Lung Cancer Survival Analysis With Missing Values
por: Wang, Jianyong, et al.
Publicado: (2021) -
The predictive value of modified-DeepSurv in overall survivals of patients with lung cancer
por: Lei, Jie, et al.
Publicado: (2023) -
The Application of Deep Convolutional Neural Networks to Brain Cancer Images: A Survey
por: Zadeh Shirazi, Amin, et al.
Publicado: (2020) -
SwarmDeepSurv: swarm intelligence advances deep survival network for prognostic radiomics signatures in four solid cancers
por: Al-Tashi, Qasem, et al.
Publicado: (2023)