Cargando…
P-ODN: Prototype-based Open Deep Network for Open Set Recognition
Most of the existing recognition algorithms are proposed for closed set scenarios, where all categories are known beforehand. However, in practice, recognition is essentially an open set problem. There are categories we know called “knowns”, and there are more we do not know called “unknowns”. Enume...
Autores principales: | Shu, Yu, Shi, Yemin, Wang, Yaowei, Huang, Tiejun, Tian, Yonghong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7188890/ https://www.ncbi.nlm.nih.gov/pubmed/32346004 http://dx.doi.org/10.1038/s41598-020-63649-6 |
Ejemplares similares
-
Centralized Space Learning for open-set computer-aided diagnosis
por: Yu, Zhongzhi, et al.
Publicado: (2023) -
Deep Active Learning via Open-Set Recognition
por: Mandivarapu, Jaya Krishna, et al.
Publicado: (2022) -
Robust tactile object recognition in open-set scenarios using Gaussian prototype learning
por: Zheng, Wendong, et al.
Publicado: (2022) -
Unified Probabilistic Deep Continual Learning through Generative Replay and Open Set Recognition
por: Mundt, Martin, et al.
Publicado: (2022) -
Open Set Self and Across Domain Adaptation for Tomato Disease Recognition With Deep Learning Techniques
por: Fuentes, Alvaro, et al.
Publicado: (2021)