Cargando…
Applying Data Mining Techniques to Extract Hidden Patterns about Breast Cancer Survival in an Iranian Cohort Study
Background: Breast cancer survival has been analyzed by many standard data mining algorithms. A group of these algorithms belonged to the decision tree category. Ability of the decision tree algorithms in terms of visualizing and formulating of hidden patterns among study variables were main reasons...
Autores principales: | Khalkhali, Hamid Reza, Lotfnezhad Afshar, Hadi, Esnaashar, Omid, Jabbari, Nasrollah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hamadan University of Medical Sciences
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189091/ https://www.ncbi.nlm.nih.gov/pubmed/27061994 |
Ejemplares similares
-
Prediction of Breast Cancer Survival by Machine Learning Methods: An Application of Multiple Imputation
por: LOTFNEZHAD AFSHAR, Hadi, et al.
Publicado: (2021) -
Energy Dependence of Measured CT Numbers on Substituted Materials Used for CT Number Calibration of Radiotherapy Treatment Planning Systems
por: Mahmoudi, Reza, et al.
Publicado: (2016) -
Prediction of Breast Cancer Survival Through Knowledge Discovery in Databases
por: Afshar, Hadi Lotfnezhad, et al.
Publicado: (2015) -
Mobile phone applications to overcome malnutrition among preschoolers: a systematic review
por: Seyyedi, Navisa, et al.
Publicado: (2019) -
Assessing study skills among a sample of university students: an Iranian survey
por: Didarloo, Alireza, et al.
Publicado: (2014)