Cargando…
AMPL: A Data-Driven Modeling Pipeline for Drug Discovery
[Image: see text] One of the key requirements for incorporating machine learning (ML) into the drug discovery process is complete traceability and reproducibility of the model building and evaluation process. With this in mind, we have developed an end-to-end modular and extensible software pipeline...
Autores principales: | Minnich, Amanda J., McLoughlin, Kevin, Tse, Margaret, Deng, Jason, Weber, Andrew, Murad, Neha, Madej, Benjamin D., Ramsundar, Bharath, Rush, Tom, Calad-Thomson, Stacie, Brase, Jim, Allen, Jonathan E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189366/ https://www.ncbi.nlm.nih.gov/pubmed/32243153 http://dx.doi.org/10.1021/acs.jcim.9b01053 |
Ejemplares similares
-
Ample subvarieties of algebraic varieties
por: Hartshorne, Robin
Publicado: (1970) -
COVID-19 in Children: An Ample Review
por: Ciuca, Ioana M
Publicado: (2020) -
Low Data Drug Discovery with One-Shot Learning
por: Altae-Tran, Han, et al.
Publicado: (2017) -
Deep learning for the life sciences: applying deep learning to genomics, microscopy, drug discovery, and more
por: Ramsundar, Bharath, et al.
Publicado: (2019) -
Colorectal endometriosis: ample data without definitive recommendations
por: Moawad, GN, et al.
Publicado: (2021)