Cargando…
Deep Generative Models for 3D Linker Design
[Image: see text] Rational compound design remains a challenging problem for both computational methods and medicinal chemists. Computational generative methods have begun to show promising results for the design problem. However, they have not yet used the power of three-dimensional (3D) structural...
Autores principales: | Imrie, Fergus, Bradley, Anthony R., van der Schaar, Mihaela, Deane, Charlotte M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189367/ https://www.ncbi.nlm.nih.gov/pubmed/32195587 http://dx.doi.org/10.1021/acs.jcim.9b01120 |
Ejemplares similares
-
Deep generative design with 3D pharmacophoric constraints
por: Imrie, Fergus, et al.
Publicado: (2021) -
Generating property-matched decoy molecules using deep learning
por: Imrie, Fergus, et al.
Publicado: (2021) -
Incorporating Target-Specific Pharmacophoric Information
into Deep Generative Models for Fragment Elaboration
por: Hadfield, Thomas E., et al.
Publicado: (2022) -
AutoPrognosis 2.0: Democratizing diagnostic and prognostic modeling in healthcare with automated machine learning
por: Imrie, Fergus, et al.
Publicado: (2023) -
Assessing eligibility for lung cancer screening using parsimonious ensemble machine learning models: A development and validation study
por: Callender, Thomas, et al.
Publicado: (2023)