Cargando…
Effect of bacterial endotoxin lipopolysaccharide treatment on duck Leydig cells
This study aimed to investigate the effects of bacterial endotoxin lipopolysaccharide (LPS) on hormone production and gene expression in duck Leydig cells and its underlying mechanisms. Leydig cells were collected from 200-day-old mallard ducks and divided into five treatment groups (0, 50, 100, 200...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Colégio Brasileiro de Reprodução Animal
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189506/ https://www.ncbi.nlm.nih.gov/pubmed/32368266 http://dx.doi.org/10.21451/1984-3143-AR2019-0002 |
Sumario: | This study aimed to investigate the effects of bacterial endotoxin lipopolysaccharide (LPS) on hormone production and gene expression in duck Leydig cells and its underlying mechanisms. Leydig cells were collected from 200-day-old mallard ducks and divided into five treatment groups (0, 50, 100, 200, and 400 ng/mL LPS). After treatment with LPS for 6, 12, 24, and 48 h, testosterone, activin, and inhibin levels in the cell supernatants were determined using enzyme-linked immunosorbent assay (ELISA) kits. The expression levels of testosterone synthesis-related genes, including steroidogenic acute regulatory protein (StAR), 3-beta-hydroxysteroid dehydrogenase (3β-HSD), and cytochrome P450 aromatase (P450arom), and reproductive-related genes, including gonadotropin-inhibitory hormone receptor (GnIHR), follicle stimulating hormone receptor (FSHR), and luteinizing hormone receptor (LHR) were detected using quantitative real-time polymerase chain reaction (qRT-PCR). We successfully isolated and cultured duck Leydig cells with cell purity above 90%. Compared with the control group, the levels of testosterone, activin, and inhibin secreted in Leydig cells decreased gradually with increasing LPS concentration. After treatment with LPS, the expression of StAR and 3β-HSD genes in Leydig cells was upregulated at 12 h, and that of GnIHR was upregulated at 24 h; whereas the expression of FSHR and LHR was reduced at 24 h. This study indicates that LPS can inhibit the secretion of hormones and regulate the expression of related genes in duck Leydig cells. |
---|