Cargando…
Single Aliquot Regeneration (SAR) Optically Stimulated Luminescence Dating Protocols Using Different Grain-Sizes of Quartz: Revisiting the Chronology of Mircea Vodă Loess-Paleosol Master Section (Romania)
The loess-paleosol archive from Mircea Vodă (Romania) represents one of the most studied sections in Europe. We are applying here the current state of the art luminescence dating protocols for revisiting the chronology of this section. Analysis were performed on fine (4–11 µm) and coarse (63–90 µm)...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189666/ https://www.ncbi.nlm.nih.gov/pubmed/32121026 http://dx.doi.org/10.3390/mps3010019 |
Sumario: | The loess-paleosol archive from Mircea Vodă (Romania) represents one of the most studied sections in Europe. We are applying here the current state of the art luminescence dating protocols for revisiting the chronology of this section. Analysis were performed on fine (4–11 µm) and coarse (63–90 µm) quartz extracts using the single aliquot regenerative (SAR) optically stimulated luminescence (OSL) dating protocol. Laboratory generated SAR dose response curves in the high dose range (5 kGy for fine quartz and 2 kGy for coarse quartz) were investigated by employing a test dose of either 17 or 170 Gy. The results confirm the previously reported different saturation characteristics of the two quartz fractions, with no evident dependency of the equivalent dose (D(e)) on the size of the test dose. The OSL SAR ages are discussed and compared to the previously obtained results on quartz and feldspars. The previous reports regarding the chronological discrepancy between the two quartz fractions are confirmed. However, while previous investigations on other sites concluded that this discrepancy appears only above equivalent doses of about 100 Gy, here fine grain quartz ages underestimate coarse quartz ages starting with equivalent doses as low as around 50 Gy. |
---|