Cargando…
Artificial Neural Network to Modeling Zero-inflated Count Data: Application to Predicting Number of Return to Blood Donation
Background: Traditional statistical models often are based on certain presuppositions and limitations that may not presence in actual data and lead to turbulence in estimation or prediction. In these situations, artificial neural networks (ANNs) could be suitable alternative rather than classical st...
Autores principales: | Haghani, Shima, Sedehi, Morteza, Kheiri, Soleiman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hamadan University of Medical Sciences
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189957/ |
Ejemplares similares
-
Analysis of Blood Transfusion Data Using Bivariate Zero-Inflated Poisson Model: A Bayesian Approach
por: Mohammadi, Tayeb, et al.
Publicado: (2016) -
Analysis of the Factors Affecting the Interval between Blood Donations Using Log-Normal Hazard Model with Gamma Correlated Frailty
por: Tavakol, Najmeh, et al.
Publicado: (2014) -
A comparison of zero-inflated and hurdle models for modeling zero-inflated count data
por: Feng, Cindy Xin
Publicado: (2021) -
On the equivalence of one‐inflated zero‐truncated and zero‐truncated one‐inflated count data likelihoods
por: Böhning, Dankmar
Publicado: (2022) -
A Hybrid ANN-GA Model to Prediction of Bivariate Binary Responses: Application to Joint Prediction of Occurrence of Heart Block and Death in Patients with Myocardial Infarction
por: Mirian, Negin-Sadat, et al.
Publicado: (2016)