Cargando…
Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies
OBJECTIVE: To systematically examine the design, reporting standards, risk of bias, and claims of studies comparing the performance of diagnostic deep learning algorithms for medical imaging with that of expert clinicians. DESIGN: Systematic review. DATA SOURCES: Medline, Embase, Cochrane Central Re...
Autores principales: | Nagendran, Myura, Chen, Yang, Lovejoy, Christopher A, Gordon, Anthony C, Komorowski, Matthieu, Harvey, Hugh, Topol, Eric J, Ioannidis, John P A, Collins, Gary S, Maruthappu, Mahiben |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190037/ https://www.ncbi.nlm.nih.gov/pubmed/32213531 http://dx.doi.org/10.1136/bmj.m689 |
Ejemplares similares
-
Artificial intelligence in the intensive care unit
por: Lovejoy, Christopher A., et al.
Publicado: (2019) -
Should the NHS be privatized? Annual varsity medical debate - London, 22 January 2010
por: Nagendran, Myura, et al.
Publicado: (2010) -
Financial performance of English NHS trusts and variation in clinical outcomes: a longitudinal observational study
por: Nagendran, Myura, et al.
Publicado: (2019) -
Very large treatment effects in randomised trials as an empirical marker to indicate whether subsequent trials are necessary: meta-epidemiological assessment
por: Nagendran, Myura, et al.
Publicado: (2016) -
Poor adherence of randomised trials in surgery to CONSORT guidelines for non-pharmacological treatments (NPT): a cross-sectional study
por: Nagendran, Myura, et al.
Publicado: (2013)