Cargando…
QUATgo: Protein quaternary structural attributes predicted by two-stage machine learning approaches with heterogeneous feature encoding
Many proteins exist in natures as oligomers with various quaternary structural attributes rather than as single chains. Predicting these attributes is an essential task in computational biology for the advancement of proteomics. However, the existing methods do not consider the integration of hetero...
Autores principales: | Tung, Chi-Hua, Chien, Ching-Hsuan, Chen, Chi-Wei, Huang, Lan-Ying, Liu, Yu-Nan, Chu, Yen-Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190164/ https://www.ncbi.nlm.nih.gov/pubmed/32348325 http://dx.doi.org/10.1371/journal.pone.0232087 |
Ejemplares similares
-
QuaBingo: A Prediction System for Protein Quaternary Structure Attributes Using Block Composition
por: Tung, Chi-Hua, et al.
Publicado: (2016) -
NIgPred: Class-Specific Antibody Prediction for Linear B-Cell Epitopes Based on Heterogeneous Features and Machine-Learning Approaches
por: Tung, Chi-Hua, et al.
Publicado: (2021) -
PClass: Protein Quaternary Structure Classification by Using Bootstrapping Strategy as Model Selection
por: Huang, Chi-Chou, et al.
Publicado: (2018) -
Predicting human protein subcellular localization by heterogeneous and comprehensive approaches
por: Tung, Chi-Hua, et al.
Publicado: (2017) -
Using Machine Learning Approaches to Predict Target Gene Expression in Rice T-DNA Insertional Mutants
por: Chien, Ching-Hsuan, et al.
Publicado: (2021)