Cargando…
Genome-wide analysis on the maize genome reveals weak selection on synonymous mutations
BACKGROUND: Synonymous mutations are able to change the tAI (tRNA adaptation index) of a codon and consequently affect the local translation rate. Intuitively, one may hypothesize that those synonymous mutations which increase the tAI values are favored by natural selection. RESULTS: We use the maiz...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190201/ https://www.ncbi.nlm.nih.gov/pubmed/32349669 http://dx.doi.org/10.1186/s12864-020-6745-3 |
Sumario: | BACKGROUND: Synonymous mutations are able to change the tAI (tRNA adaptation index) of a codon and consequently affect the local translation rate. Intuitively, one may hypothesize that those synonymous mutations which increase the tAI values are favored by natural selection. RESULTS: We use the maize (Zea mays) genome to test our assumption. The first supporting evidence is that the tAI-increasing synonymous mutations have higher fixed-to-polymorphic ratios than the tAI-decreasing ones. Next, the DAF (derived allele frequency) or MAF (minor allele frequency) of the former is significantly higher than the latter. Moreover, similar results are obtained when we investigate CAI (codon adaptation index) instead of tAI. CONCLUSION: The synonymous mutations in the maize genome are not strictly neutral. The tAI-increasing mutations are positively selected while those tAI-decreasing ones undergo purifying selection. This selection force might be weak but should not be automatically ignored. |
---|