Cargando…
Assessment of individual tumor buds using keratin immunohistochemistry: moderate interobserver agreement suggests a role for machine learning
Tumor budding is a promising and cost-effective biomarker with strong prognostic value in colorectal cancer. However, challenges related to interobserver variability persist. Such variability may be reduced by immunohistochemistry and computer-aided tumor bud selection. Development of computer algor...
Autores principales: | Bokhorst, J. M., Blank, A., Lugli, A., Zlobec, I., Dawson, H., Vieth, M., Rijstenberg, L. L., Brockmoeller, S., Urbanowicz, M., Flejou, J. F., Kirsch, R., Ciompi, F., van der Laak, J. A. W. M., Nagtegaal, I. D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190566/ https://www.ncbi.nlm.nih.gov/pubmed/31844269 http://dx.doi.org/10.1038/s41379-019-0434-2 |
Ejemplares similares
-
Correction to: Assessment of individual tumor buds using keratin immunohistochemistry: moderate interobserver agreement suggests a role for machine learning
por: Bokhorst, J. M., et al.
Publicado: (2020) -
Semi-Supervised Learning to Automate Tumor Bud Detection in Cytokeratin-Stained Whole-Slide Images of Colorectal Cancer
por: Bokhorst, John-Melle, et al.
Publicado: (2023) -
Improving tumor budding reporting in colorectal cancer: a Delphi consensus study
por: Haddad, Tariq Sami, et al.
Publicado: (2021) -
Deep learning for multi-class semantic segmentation enables colorectal cancer detection and classification in digital pathology images
por: Bokhorst, John-Melle, et al.
Publicado: (2023) -
Tumour budding: a promising parameter in colorectal cancer
por: Lugli, A, et al.
Publicado: (2012)