Cargando…
Effect of sulfate addition on carbon flow and microbial community composition during thermophilic digestion of cellulose
Substrates with high sulfate levels pose problems for biogas production as they allow sulfate reducing bacteria to compete with syntrophic and methanogenic members of the community. In addition, the end product of sulfate reduction, hydrogen sulfide, is toxic and corrosive. Here we show how sulfate...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190589/ https://www.ncbi.nlm.nih.gov/pubmed/32219464 http://dx.doi.org/10.1007/s00253-020-10546-7 |
_version_ | 1783527712928825344 |
---|---|
author | Lackner, Nina Wagner, Andreas O. Illmer, Paul |
author_facet | Lackner, Nina Wagner, Andreas O. Illmer, Paul |
author_sort | Lackner, Nina |
collection | PubMed |
description | Substrates with high sulfate levels pose problems for biogas production as they allow sulfate reducing bacteria to compete with syntrophic and methanogenic members of the community. In addition, the end product of sulfate reduction, hydrogen sulfide, is toxic and corrosive. Here we show how sulfate addition affects physiological processes in a thermophilic methanogenic system by analyzing the carbon flow and the microbial community with quantitative PCR and amplicon sequencing of the 16s rRNA gene. A sulfate addition of 0.5 to 3 g/L caused a decline in methane production by 73–92%, while higher sulfate concentrations had no additional inhibitory effect. Generally, sulfate addition induced a shift in the composition of the microbial community towards a higher dominance of Firmicutes and decreasing abundances of Bacteroidetes and Euryarchaeota. The abundance of methanogens (e.g., Methanoculleus and Methanosarcina) was reduced, while sulfate reducing bacteria (especially Candidatus Desulforudis and Desulfotomaculum) increased significantly in presence of sulfate. The sulfate addition had a significant impact on the carbon flow within the system, shifting the end product from methane and carbon dioxide to acetate and carbon dioxide. Interestingly, methane production quickly resumed, when sulfate was no longer present in the system. Despite the strong impact of sulfate addition on the carbon flow and the microbial community structure during thermophilic biogas production, short-term process disturbances caused by unexpected introduction of sulfate may be overcome due to the high resilience of the engaged microorganisms. |
format | Online Article Text |
id | pubmed-7190589 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-71905892020-05-04 Effect of sulfate addition on carbon flow and microbial community composition during thermophilic digestion of cellulose Lackner, Nina Wagner, Andreas O. Illmer, Paul Appl Microbiol Biotechnol Bioenergy and Biofuels Substrates with high sulfate levels pose problems for biogas production as they allow sulfate reducing bacteria to compete with syntrophic and methanogenic members of the community. In addition, the end product of sulfate reduction, hydrogen sulfide, is toxic and corrosive. Here we show how sulfate addition affects physiological processes in a thermophilic methanogenic system by analyzing the carbon flow and the microbial community with quantitative PCR and amplicon sequencing of the 16s rRNA gene. A sulfate addition of 0.5 to 3 g/L caused a decline in methane production by 73–92%, while higher sulfate concentrations had no additional inhibitory effect. Generally, sulfate addition induced a shift in the composition of the microbial community towards a higher dominance of Firmicutes and decreasing abundances of Bacteroidetes and Euryarchaeota. The abundance of methanogens (e.g., Methanoculleus and Methanosarcina) was reduced, while sulfate reducing bacteria (especially Candidatus Desulforudis and Desulfotomaculum) increased significantly in presence of sulfate. The sulfate addition had a significant impact on the carbon flow within the system, shifting the end product from methane and carbon dioxide to acetate and carbon dioxide. Interestingly, methane production quickly resumed, when sulfate was no longer present in the system. Despite the strong impact of sulfate addition on the carbon flow and the microbial community structure during thermophilic biogas production, short-term process disturbances caused by unexpected introduction of sulfate may be overcome due to the high resilience of the engaged microorganisms. Springer Berlin Heidelberg 2020-03-26 2020 /pmc/articles/PMC7190589/ /pubmed/32219464 http://dx.doi.org/10.1007/s00253-020-10546-7 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Bioenergy and Biofuels Lackner, Nina Wagner, Andreas O. Illmer, Paul Effect of sulfate addition on carbon flow and microbial community composition during thermophilic digestion of cellulose |
title | Effect of sulfate addition on carbon flow and microbial community composition during thermophilic digestion of cellulose |
title_full | Effect of sulfate addition on carbon flow and microbial community composition during thermophilic digestion of cellulose |
title_fullStr | Effect of sulfate addition on carbon flow and microbial community composition during thermophilic digestion of cellulose |
title_full_unstemmed | Effect of sulfate addition on carbon flow and microbial community composition during thermophilic digestion of cellulose |
title_short | Effect of sulfate addition on carbon flow and microbial community composition during thermophilic digestion of cellulose |
title_sort | effect of sulfate addition on carbon flow and microbial community composition during thermophilic digestion of cellulose |
topic | Bioenergy and Biofuels |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190589/ https://www.ncbi.nlm.nih.gov/pubmed/32219464 http://dx.doi.org/10.1007/s00253-020-10546-7 |
work_keys_str_mv | AT lacknernina effectofsulfateadditiononcarbonflowandmicrobialcommunitycompositionduringthermophilicdigestionofcellulose AT wagnerandreaso effectofsulfateadditiononcarbonflowandmicrobialcommunitycompositionduringthermophilicdigestionofcellulose AT illmerpaul effectofsulfateadditiononcarbonflowandmicrobialcommunitycompositionduringthermophilicdigestionofcellulose |