Cargando…

Applying a data-driven approach to quantify EEG maturational deviations in preterms with normal and abnormal neurodevelopmental outcomes

Premature babies are subjected to environmental stresses that can affect brain maturation and cause abnormal neurodevelopmental outcome later in life. Better understanding this link is crucial to developing a clinical tool for early outcome estimation. We defined maturational trajectories between th...

Descripción completa

Detalles Bibliográficos
Autores principales: Pillay, Kirubin, Dereymaeker, Anneleen, Jansen, Katrien, Naulaers, Gunnar, De Vos, Maarten
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190650/
https://www.ncbi.nlm.nih.gov/pubmed/32350387
http://dx.doi.org/10.1038/s41598-020-64211-0
Descripción
Sumario:Premature babies are subjected to environmental stresses that can affect brain maturation and cause abnormal neurodevelopmental outcome later in life. Better understanding this link is crucial to developing a clinical tool for early outcome estimation. We defined maturational trajectories between the Electroencephalography (EEG)-derived ‘brain-age’ and postmenstrual age (the age since the last menstrual cycle of the mother) from longitudinal recordings during the baby’s stay in the Neonatal Intensive Care Unit. Data consisted of 224 recordings (65 patients) separated for normal and abnormal outcome at 9–24 months follow-up. Trajectory deviations were compared between outcome groups using the root mean squared error (RMSE) and maximum trajectory deviation (δ(max)). 113 features were extracted (per sleep state) to train a data-driven model that estimates brain-age, with the most prominent features identified as potential maturational and outcome-sensitive biomarkers. RMSE and δ(max) showed significant differences between outcome groups (cluster-based permutation test, p < 0.05). RMSE had a median (IQR) of 0.75 (0.60–1.35) weeks for normal outcome and 1.35 (1.15–1.55) for abnormal outcome, while δ(max) had a median of 0.90 (0.70–1.70) and 1.90 (1.20–2.90) weeks, respectively. Abnormal outcome trajectories were associated with clinically defined dysmature and disorganised EEG patterns, cementing the link between early maturational trajectories and neurodevelopmental outcome.