Cargando…
Parametric emulation and inference in computationally expensive integrated urban water quality simulators
Water quality environmental assessment often requires the joint simulation of several subsystems (e.g. wastewater treatment processes, urban drainage and receiving water bodies). The complexity of these integrated catchment models grows fast, leading to potentially over-parameterised and computation...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190686/ https://www.ncbi.nlm.nih.gov/pubmed/31273657 http://dx.doi.org/10.1007/s11356-019-05620-1 |
_version_ | 1783527734292512768 |
---|---|
author | Moreno-Rodenas, Antonio M. Langeveld, Jeroen G. Clemens, Francois H. L. R. |
author_facet | Moreno-Rodenas, Antonio M. Langeveld, Jeroen G. Clemens, Francois H. L. R. |
author_sort | Moreno-Rodenas, Antonio M. |
collection | PubMed |
description | Water quality environmental assessment often requires the joint simulation of several subsystems (e.g. wastewater treatment processes, urban drainage and receiving water bodies). The complexity of these integrated catchment models grows fast, leading to potentially over-parameterised and computationally expensive models. The receiving water body physical and biochemical parameters are often a dominant source of uncertainty when simulating dissolved oxygen depletion processes. Thus, the use of system observations to refine prior knowledge (from experts or literature) is usually required. Unfortunately, simulating real-world scale water quality processes results in a significant computational burden, for which the use of sampling intensive applications (e.g. parametric inference) is severely hampered. Data-driven emulation aims at creating an interpolation map between the parametric and output multidimensional spaces of a dynamic simulator, thus providing a fast approximation of the model response. In this study a large-scale integrated urban water quality model is used to simulate dissolved oxygen depletion processes in a sensitive river. A polynomial expansion emulator was proposed to approximate the link between four and eight river physical and biochemical river parameters and the dynamics of river flow and dissolved oxygen concentration during one year (at hourly frequency). The emulator scheme was used to perform a sensitivity analysis and a formal parametric inference using local system observations. The effect of different likelihood assumptions (e.g. heteroscedasticity, normality and autocorrelation) during the inference of dissolved oxygen processes is also discussed. This study shows how the use of data-driven emulators can facilitate the integration of formal uncertainty analysis schemes in the hydrological and water quality modelling community. |
format | Online Article Text |
id | pubmed-7190686 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-71906862020-05-04 Parametric emulation and inference in computationally expensive integrated urban water quality simulators Moreno-Rodenas, Antonio M. Langeveld, Jeroen G. Clemens, Francois H. L. R. Environ Sci Pollut Res Int Advances in Receiving Water Quality Models Water quality environmental assessment often requires the joint simulation of several subsystems (e.g. wastewater treatment processes, urban drainage and receiving water bodies). The complexity of these integrated catchment models grows fast, leading to potentially over-parameterised and computationally expensive models. The receiving water body physical and biochemical parameters are often a dominant source of uncertainty when simulating dissolved oxygen depletion processes. Thus, the use of system observations to refine prior knowledge (from experts or literature) is usually required. Unfortunately, simulating real-world scale water quality processes results in a significant computational burden, for which the use of sampling intensive applications (e.g. parametric inference) is severely hampered. Data-driven emulation aims at creating an interpolation map between the parametric and output multidimensional spaces of a dynamic simulator, thus providing a fast approximation of the model response. In this study a large-scale integrated urban water quality model is used to simulate dissolved oxygen depletion processes in a sensitive river. A polynomial expansion emulator was proposed to approximate the link between four and eight river physical and biochemical river parameters and the dynamics of river flow and dissolved oxygen concentration during one year (at hourly frequency). The emulator scheme was used to perform a sensitivity analysis and a formal parametric inference using local system observations. The effect of different likelihood assumptions (e.g. heteroscedasticity, normality and autocorrelation) during the inference of dissolved oxygen processes is also discussed. This study shows how the use of data-driven emulators can facilitate the integration of formal uncertainty analysis schemes in the hydrological and water quality modelling community. Springer Berlin Heidelberg 2019-07-04 2020 /pmc/articles/PMC7190686/ /pubmed/31273657 http://dx.doi.org/10.1007/s11356-019-05620-1 Text en © The Author(s) 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Advances in Receiving Water Quality Models Moreno-Rodenas, Antonio M. Langeveld, Jeroen G. Clemens, Francois H. L. R. Parametric emulation and inference in computationally expensive integrated urban water quality simulators |
title | Parametric emulation and inference in computationally expensive integrated urban water quality simulators |
title_full | Parametric emulation and inference in computationally expensive integrated urban water quality simulators |
title_fullStr | Parametric emulation and inference in computationally expensive integrated urban water quality simulators |
title_full_unstemmed | Parametric emulation and inference in computationally expensive integrated urban water quality simulators |
title_short | Parametric emulation and inference in computationally expensive integrated urban water quality simulators |
title_sort | parametric emulation and inference in computationally expensive integrated urban water quality simulators |
topic | Advances in Receiving Water Quality Models |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190686/ https://www.ncbi.nlm.nih.gov/pubmed/31273657 http://dx.doi.org/10.1007/s11356-019-05620-1 |
work_keys_str_mv | AT morenorodenasantoniom parametricemulationandinferenceincomputationallyexpensiveintegratedurbanwaterqualitysimulators AT langeveldjeroeng parametricemulationandinferenceincomputationallyexpensiveintegratedurbanwaterqualitysimulators AT clemensfrancoishlr parametricemulationandinferenceincomputationallyexpensiveintegratedurbanwaterqualitysimulators |