Cargando…

Direct and indirect effects of plant diversity and phenoxy herbicide application on the development and reproduction of a polyphagous herbivore

Widespread application of synthetic pesticides and loss of plant diversity are regarded as significant drivers of current global change. The effects of such phenomena on insect performance have been extensively studied separately, yet the interactions of these two drivers have been poorly explored....

Descripción completa

Detalles Bibliográficos
Autores principales: Gutiérrez, Yeisson, Ott, David, Scherber, Christoph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190834/
https://www.ncbi.nlm.nih.gov/pubmed/32350369
http://dx.doi.org/10.1038/s41598-020-64252-5
Descripción
Sumario:Widespread application of synthetic pesticides and loss of plant diversity are regarded as significant drivers of current global change. The effects of such phenomena on insect performance have been extensively studied separately, yet the interactions of these two drivers have been poorly explored. Here, we subjected the polyphagous grasshopper Pseudochorthippus parallelus (Zetterstedt, 1821) to a full-lifecycle field experiment with 50 cages containing experimental plant communities differing in grass species richness (2 vs. 8 grass species), half of them treated with a phenoxy herbicide commonly employed to control broadleaf plants in grasslands. We measured plant elemental content as a proxy for plant physiology, and a wide range of insect traits in both female and male grasshoppers. In females, grass diversity increased herbivory, insect nitrogen content and egg load, while herbicide reduced herbivory but increased the number of offspring, likely mediated by altered plant community composition. In males, grass diversity also increased herbivory, had positive effects on fat body, muscle volume and lifespan, and negative effects on body mass. Herbicide negatively affected herbivory in both females and males. Overall, plant diversity and herbicides may shift resource allocation in generalist terrestrial insect herbivores, indicating complex and unexpected effects of human-induced environmental change.