Cargando…
Computational Evaluation of Surgical Design for Multisegmental Complex Congenital Tracheal Stenosis
Multisegmental complex congenital tracheal stenosis (CTS) is an uncommon but potentially life-threatening malformation of the airway. Staged surgery is indicated for the complex pathophysiology of the abnormal trachea. Surgical intervention to fix the stenotic segments may result in different postop...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191439/ https://www.ncbi.nlm.nih.gov/pubmed/32382545 http://dx.doi.org/10.1155/2020/3509814 |
_version_ | 1783527864437571584 |
---|---|
author | Zhu, Limin Gong, Xiaolei Liu, Jinlong Li, Youjin Zhong, Yumin Shen, Juanya Xu, Zhuoming |
author_facet | Zhu, Limin Gong, Xiaolei Liu, Jinlong Li, Youjin Zhong, Yumin Shen, Juanya Xu, Zhuoming |
author_sort | Zhu, Limin |
collection | PubMed |
description | Multisegmental complex congenital tracheal stenosis (CTS) is an uncommon but potentially life-threatening malformation of the airway. Staged surgery is indicated for the complex pathophysiology of the abnormal trachea. Surgical intervention to fix the stenotic segments may result in different postoperative outcomes. However, only few studies reported the design of surgical correction for multisegmental CTS. We used computer-aided design (CAD) to simulate surgical correction under different schemes to develop a patient-specific tracheal model with two segmental stenoses. Computational fluid dynamics (CFD) was used to compare the outcomes of different designs. Aerodynamic parameters of the trachea were evaluated. An obvious interaction was found between the two segments of stenosis in different surgical designs. The surgical corrective order of stenotic segments greatly affected the aerodynamic parameters and turbulence flows downstream of tracheal stenosis and upstream of the bronchus. Patient-specific studies using CAD and CFD minimize the risk of staged surgical correction and facilitate quantitative evaluation of surgical design for multiple segments of complex CTS. |
format | Online Article Text |
id | pubmed-7191439 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-71914392020-05-07 Computational Evaluation of Surgical Design for Multisegmental Complex Congenital Tracheal Stenosis Zhu, Limin Gong, Xiaolei Liu, Jinlong Li, Youjin Zhong, Yumin Shen, Juanya Xu, Zhuoming Biomed Res Int Research Article Multisegmental complex congenital tracheal stenosis (CTS) is an uncommon but potentially life-threatening malformation of the airway. Staged surgery is indicated for the complex pathophysiology of the abnormal trachea. Surgical intervention to fix the stenotic segments may result in different postoperative outcomes. However, only few studies reported the design of surgical correction for multisegmental CTS. We used computer-aided design (CAD) to simulate surgical correction under different schemes to develop a patient-specific tracheal model with two segmental stenoses. Computational fluid dynamics (CFD) was used to compare the outcomes of different designs. Aerodynamic parameters of the trachea were evaluated. An obvious interaction was found between the two segments of stenosis in different surgical designs. The surgical corrective order of stenotic segments greatly affected the aerodynamic parameters and turbulence flows downstream of tracheal stenosis and upstream of the bronchus. Patient-specific studies using CAD and CFD minimize the risk of staged surgical correction and facilitate quantitative evaluation of surgical design for multiple segments of complex CTS. Hindawi 2020-04-20 /pmc/articles/PMC7191439/ /pubmed/32382545 http://dx.doi.org/10.1155/2020/3509814 Text en Copyright © 2020 Limin Zhu et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Zhu, Limin Gong, Xiaolei Liu, Jinlong Li, Youjin Zhong, Yumin Shen, Juanya Xu, Zhuoming Computational Evaluation of Surgical Design for Multisegmental Complex Congenital Tracheal Stenosis |
title | Computational Evaluation of Surgical Design for Multisegmental Complex Congenital Tracheal Stenosis |
title_full | Computational Evaluation of Surgical Design for Multisegmental Complex Congenital Tracheal Stenosis |
title_fullStr | Computational Evaluation of Surgical Design for Multisegmental Complex Congenital Tracheal Stenosis |
title_full_unstemmed | Computational Evaluation of Surgical Design for Multisegmental Complex Congenital Tracheal Stenosis |
title_short | Computational Evaluation of Surgical Design for Multisegmental Complex Congenital Tracheal Stenosis |
title_sort | computational evaluation of surgical design for multisegmental complex congenital tracheal stenosis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191439/ https://www.ncbi.nlm.nih.gov/pubmed/32382545 http://dx.doi.org/10.1155/2020/3509814 |
work_keys_str_mv | AT zhulimin computationalevaluationofsurgicaldesignformultisegmentalcomplexcongenitaltrachealstenosis AT gongxiaolei computationalevaluationofsurgicaldesignformultisegmentalcomplexcongenitaltrachealstenosis AT liujinlong computationalevaluationofsurgicaldesignformultisegmentalcomplexcongenitaltrachealstenosis AT liyoujin computationalevaluationofsurgicaldesignformultisegmentalcomplexcongenitaltrachealstenosis AT zhongyumin computationalevaluationofsurgicaldesignformultisegmentalcomplexcongenitaltrachealstenosis AT shenjuanya computationalevaluationofsurgicaldesignformultisegmentalcomplexcongenitaltrachealstenosis AT xuzhuoming computationalevaluationofsurgicaldesignformultisegmentalcomplexcongenitaltrachealstenosis |