Cargando…
Permeability Evolution of Shear Failing Chalk Cores under Thermochemical Influence
[Image: see text] Development of petroleum reservoirs, including primary depletion of the pore pressure and repressurization during water injection naturally, leads to changes in effective stresses of the formations. These changes impose mechanical deformation of the rock mass with subsequent alteri...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191565/ https://www.ncbi.nlm.nih.gov/pubmed/32363270 http://dx.doi.org/10.1021/acsomega.9b04470 |
_version_ | 1783527874839445504 |
---|---|
author | Kallesten, Emanuela I. Andersen, Pål Østebø Madland, Merete V. Korsnes, Reidar I. Omdal, Edvard Zimmermann, Udo |
author_facet | Kallesten, Emanuela I. Andersen, Pål Østebø Madland, Merete V. Korsnes, Reidar I. Omdal, Edvard Zimmermann, Udo |
author_sort | Kallesten, Emanuela I. |
collection | PubMed |
description | [Image: see text] Development of petroleum reservoirs, including primary depletion of the pore pressure and repressurization during water injection naturally, leads to changes in effective stresses of the formations. These changes impose mechanical deformation of the rock mass with subsequent altering of its petrophysical properties. Besides mechanical compaction, chalk reservoirs on the Norwegian Continental Shelf also seem susceptible to mineralogical and textural changes as an effect of the injecting fluid’s chemical composition and temperature. Understanding such chemical and thermal effects and how they interplay with the mechanical response to changes in effective stresses could contribute to improved prediction of permeability development during field life. This article presents results from mechanical testing of chalk cores of medium-porosity (32%) outcrop chalk (Niobrara Formation, Kansas) in triaxial cells. The experimental setup allows systematic combinations of fluctuating deviatoric stress, temperature (50 and 130 °C), and injecting fluid (calcite-equilibrated sodium chloride, calcite-equilibrated sodium sulfate, and reactive synthetic seawater) intended to replicate in situ processes, relevant to the North Sea chalk reservoirs. Deviatoric loading above yield resulted in a shear failure with a steeply dipping fracture of the core and a simultaneous increase in permeability. This occurred regardless of the brine composition. The second and third deviatoric loadings above yield did not have the same strong effect on permeability. During creep and unloading, the permeability changes were minor such that the end permeability remained higher than the initial values. However, sodium sulfate-injected cores retained most of the permeability gain after shear fracturing compared to sodium chloride and synthetic seawater series at both temperatures. Synthetic seawater-injected cores registered the most permeability loss compared to the other brines at 130 °C. The results indicate that repulsive forces generated by sulfate adsorption contribute to maintain the fracture permeability. |
format | Online Article Text |
id | pubmed-7191565 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-71915652020-05-01 Permeability Evolution of Shear Failing Chalk Cores under Thermochemical Influence Kallesten, Emanuela I. Andersen, Pål Østebø Madland, Merete V. Korsnes, Reidar I. Omdal, Edvard Zimmermann, Udo ACS Omega [Image: see text] Development of petroleum reservoirs, including primary depletion of the pore pressure and repressurization during water injection naturally, leads to changes in effective stresses of the formations. These changes impose mechanical deformation of the rock mass with subsequent altering of its petrophysical properties. Besides mechanical compaction, chalk reservoirs on the Norwegian Continental Shelf also seem susceptible to mineralogical and textural changes as an effect of the injecting fluid’s chemical composition and temperature. Understanding such chemical and thermal effects and how they interplay with the mechanical response to changes in effective stresses could contribute to improved prediction of permeability development during field life. This article presents results from mechanical testing of chalk cores of medium-porosity (32%) outcrop chalk (Niobrara Formation, Kansas) in triaxial cells. The experimental setup allows systematic combinations of fluctuating deviatoric stress, temperature (50 and 130 °C), and injecting fluid (calcite-equilibrated sodium chloride, calcite-equilibrated sodium sulfate, and reactive synthetic seawater) intended to replicate in situ processes, relevant to the North Sea chalk reservoirs. Deviatoric loading above yield resulted in a shear failure with a steeply dipping fracture of the core and a simultaneous increase in permeability. This occurred regardless of the brine composition. The second and third deviatoric loadings above yield did not have the same strong effect on permeability. During creep and unloading, the permeability changes were minor such that the end permeability remained higher than the initial values. However, sodium sulfate-injected cores retained most of the permeability gain after shear fracturing compared to sodium chloride and synthetic seawater series at both temperatures. Synthetic seawater-injected cores registered the most permeability loss compared to the other brines at 130 °C. The results indicate that repulsive forces generated by sulfate adsorption contribute to maintain the fracture permeability. American Chemical Society 2020-04-13 /pmc/articles/PMC7191565/ /pubmed/32363270 http://dx.doi.org/10.1021/acsomega.9b04470 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Kallesten, Emanuela I. Andersen, Pål Østebø Madland, Merete V. Korsnes, Reidar I. Omdal, Edvard Zimmermann, Udo Permeability Evolution of Shear Failing Chalk Cores under Thermochemical Influence |
title | Permeability Evolution of Shear Failing Chalk Cores
under Thermochemical Influence |
title_full | Permeability Evolution of Shear Failing Chalk Cores
under Thermochemical Influence |
title_fullStr | Permeability Evolution of Shear Failing Chalk Cores
under Thermochemical Influence |
title_full_unstemmed | Permeability Evolution of Shear Failing Chalk Cores
under Thermochemical Influence |
title_short | Permeability Evolution of Shear Failing Chalk Cores
under Thermochemical Influence |
title_sort | permeability evolution of shear failing chalk cores
under thermochemical influence |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191565/ https://www.ncbi.nlm.nih.gov/pubmed/32363270 http://dx.doi.org/10.1021/acsomega.9b04470 |
work_keys_str_mv | AT kallestenemanuelai permeabilityevolutionofshearfailingchalkcoresunderthermochemicalinfluence AT andersenpaløstebø permeabilityevolutionofshearfailingchalkcoresunderthermochemicalinfluence AT madlandmeretev permeabilityevolutionofshearfailingchalkcoresunderthermochemicalinfluence AT korsnesreidari permeabilityevolutionofshearfailingchalkcoresunderthermochemicalinfluence AT omdaledvard permeabilityevolutionofshearfailingchalkcoresunderthermochemicalinfluence AT zimmermannudo permeabilityevolutionofshearfailingchalkcoresunderthermochemicalinfluence |