Cargando…
Deep learning with sentence embeddings pre-trained on biomedical corpora improves the performance of finding similar sentences in electronic medical records
BACKGROUND: Capturing sentence semantics plays a vital role in a range of text mining applications. Despite continuous efforts on the development of related datasets and models in the general domain, both datasets and models are limited in biomedical and clinical domains. The BioCreative/OHNLP2018 o...
Autores principales: | Chen, Qingyu, Du, Jingcheng, Kim, Sun, Wilbur, W. John, Lu, Zhiyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191680/ https://www.ncbi.nlm.nih.gov/pubmed/32349758 http://dx.doi.org/10.1186/s12911-020-1044-0 |
Ejemplares similares
-
Neural sentence embedding models for semantic similarity estimation in the biomedical domain
por: Blagec, Kathrin, et al.
Publicado: (2019) -
Fast and scalable neural embedding models for biomedical sentence classification
por: Agibetov, Asan, et al.
Publicado: (2018) -
Finding related sentence pairs in MEDLINE
por: Smith, Larry H., et al.
Publicado: (2010) -
Protocol for a reproducible experimental survey on biomedical sentence similarity
por: Lara-Clares, Alicia, et al.
Publicado: (2021) -
Plant disease prescription recommendation based on electronic medical records and sentence embedding retrieval
por: Ding, Junqi, et al.
Publicado: (2023)