Cargando…

PRECISE pregnancy cohort: challenges and strategies in setting up a biorepository in sub-Saharan Africa

BACKGROUND AND OBJECTIVE: PRECISE is a population-based, prospective pregnancy cohort study designed for deep phenotyping of pregnancies in women with placenta-related disorders, and in healthy controls. The PRECISE Network is recruiting ~ 10,000 pregnant women in three countries (The Gambia, Kenya,...

Descripción completa

Detalles Bibliográficos
Autores principales: Craik, Rachel, Russell, Donna, Tribe, Rachel M., Poston, Lucilla, Omuse, Geoffrey, Okiro, Patricia, Chege, David, Diatta, Mathurin, Sesay, Abdul Karim, Cuamba, Inocencia, Carrilho, Carla, Sevene, Esperança, Flint-O’Kane, Meriel, von Dadelszen, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191687/
https://www.ncbi.nlm.nih.gov/pubmed/32354368
http://dx.doi.org/10.1186/s12978-020-0874-7
Descripción
Sumario:BACKGROUND AND OBJECTIVE: PRECISE is a population-based, prospective pregnancy cohort study designed for deep phenotyping of pregnancies in women with placenta-related disorders, and in healthy controls. The PRECISE Network is recruiting ~ 10,000 pregnant women in three countries (The Gambia, Kenya, and Mozambique) representing sub-Saharan Africa. The principal aim is to improve our understanding of pre-eclampsia, fetal growth restriction and stillbirth. This involves the creation of a highly curated biorepository for state of the art discovery science and a rich database of antenatal variables and maternal and neonatal outcomes. Our overarching aim is to provide large sample numbers with adequate power to address key scientific questions. Here we describe our experience of establishing a biorepository in the PRECISE Network and review the issues and challenges surrounding set-up, management and scientific use. METHODS: The feasibility of collecting and processing each sample type was assessed in each setting and plans made for establishing the necessary infrastructure. Quality control (QC) protocols were established to ensure that biological samples are ‘fit-for-purpose'. The management structures required for standardised sample collection and processing were developed. This included the need for transport of samples between participating countries and to external academic/commercial institutions. RESULTS: Numerous practical challenges were encountered in setting up the infrastructure including facilities, staffing, training, cultural barriers, procurement, shipping and sample storage. Whilst delaying the project, these were overcome by establishing good communication with the sites, training workshops and constant engagement with the necessary commercial suppliers. A Project Executive Committee and Biology Working Group together defined the biospecimens required to answer the research questions paying particular attention to harmonisation of protocols with other cohorts so as to enable cross-biorepository collaboration. Governance structures implemented include a Data and Sample Committee to ensure biospecimens and data will be used according to consent, and prioritisation by scientific excellence. A coordinated sample and data transfer agreement will prevent delay in sample sharing. DISCUSSION: With adequate training and infrastructure, it is possible to establish high quality sample collections to facilitate research programmes such as the PRECISE Network in sub-Saharan Africa. These preparations are pre-requisites for effective execution of a biomarker-based approach to better understand the complexities of placental disease in these settings, and others.