Cargando…
Publicly available machine learning models for identifying opioid misuse from the clinical notes of hospitalized patients
BACKGROUND: Automated de-identification methods for removing protected health information (PHI) from the source notes of the electronic health record (EHR) rely on building systems to recognize mentions of PHI in text, but they remain inadequate at ensuring perfect PHI removal. As an alternative to...
Autores principales: | Sharma, Brihat, Dligach, Dmitriy, Swope, Kristin, Salisbury-Afshar, Elizabeth, Karnik, Niranjan S., Joyce, Cara, Afshar, Majid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191715/ https://www.ncbi.nlm.nih.gov/pubmed/32349766 http://dx.doi.org/10.1186/s12911-020-1099-y |
Ejemplares similares
-
Subtypes in patients with opioid misuse: A prognostic enrichment strategy using electronic health record data in hospitalized patients
por: Afshar, Majid, et al.
Publicado: (2019) -
External validation of an opioid misuse machine learning classifier in hospitalized adult patients
por: Afshar, Majid, et al.
Publicado: (2021) -
Bias and fairness assessment of a natural language processing opioid misuse classifier: detection and mitigation of electronic health record data disadvantages across racial subgroups
por: Thompson, Hale M, et al.
Publicado: (2021) -
Development and multimodal validation of a substance misuse algorithm for referral to treatment using artificial intelligence (SMART-AI): a retrospective deep learning study
por: Afshar, Majid, et al.
Publicado: (2022) -
Deployment of Real-time Natural Language Processing and Deep Learning Clinical Decision Support in the Electronic Health Record: Pipeline Implementation for an Opioid Misuse Screener in Hospitalized Adults
por: Afshar, Majid, et al.
Publicado: (2023)