Cargando…
New MOF/COF Hybrid as a Robust Adsorbent for Simultaneous Removal of Auramine O and Rhodamine B Dyes
[Image: see text] In this study, by hybridization of zinc-based metal–organic framework-5 (MOF-5) and melamine-terephthaldehyde-based intergrade two-dimensional π-conjugated covalent organic framework (COF), a novel MOF-5/COF (M5C) hybrid material was prepared and characterized by Fourier transform...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191862/ https://www.ncbi.nlm.nih.gov/pubmed/32363294 http://dx.doi.org/10.1021/acsomega.0c00539 |
Sumario: | [Image: see text] In this study, by hybridization of zinc-based metal–organic framework-5 (MOF-5) and melamine-terephthaldehyde-based intergrade two-dimensional π-conjugated covalent organic framework (COF), a novel MOF-5/COF (M5C) hybrid material was prepared and characterized by Fourier transform infrared, field emission scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis. MOF-5 has a well-defined cubic structure, and the proposed COF has an orderly and spherical nanosize shape. The prepared MOF-5/COF was applied as an effective adsorbent for rapid and high-efficient simultaneous removal of auramine O (AO) and rhodamine B (RB) cationic dyes via electrostatic, H-bonding, Lewis acid–base interactions, and π–π stacking from aqueous solution. The effect of experimental parameters such as pH, M5C mass, contact time, and AO and RB dyes concentration was investigated for removal efficiency and optimized. The M5C adsorbent showed an adsorption capacity of 17.95 and 16.18 mg/g for AO and RB dyes, respectively, at pH 9.5. The adsorption study of AO and RB dyes by M5C comprises both isotherm and kinetic studies. The equilibrium adsorption data followed by Langmuir isotherm and the adsorption kinetic process were found to be a pseudo-second-order model. The robustness adsorption efficiency of MOF/COF hybrids can be attributed to the formation of amide bonds between COF and MOFs, which improve the stability of the adsorbent. |
---|