Cargando…

Effect of Aldosterone on Senescence and Proliferation Inhibition of Endothelial Progenitor Cells Induced by Sirtuin 1 (SIRT1) in Pulmonary Arterial Hypertension

BACKGROUND: Pulmonary arterial hypertension (PAH) is characterized by a progressive increase in pulmonary circulatory resistance. Pulmonary vascular endothelial dysfunction is one of the main causes of primary PAH. Endothelial progenitor cells (EPCs) can proliferate and differentiate into vascular e...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yue, Zhong, Bin, Wu, Qiyong, Tong, Jichun, Zhu, Tao, Zhang, Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191948/
https://www.ncbi.nlm.nih.gov/pubmed/32303670
http://dx.doi.org/10.12659/MSM.920678
_version_ 1783527939445358592
author Wang, Yue
Zhong, Bin
Wu, Qiyong
Tong, Jichun
Zhu, Tao
Zhang, Ming
author_facet Wang, Yue
Zhong, Bin
Wu, Qiyong
Tong, Jichun
Zhu, Tao
Zhang, Ming
author_sort Wang, Yue
collection PubMed
description BACKGROUND: Pulmonary arterial hypertension (PAH) is characterized by a progressive increase in pulmonary circulatory resistance. Pulmonary vascular endothelial dysfunction is one of the main causes of primary PAH. Endothelial progenitor cells (EPCs) can proliferate and differentiate into vascular endothelial cells and play an important role in maintaining normal endothelial function. Mineralocorticoid receptor inhibitor has been reported to be used in the treatment of PAH. However, the role and the underlying mechanism of aldosterone (ALDO) in PAH remains unclear. MATERIAL/METHODS: Rats were divided to 4 groups (n=10 per group) and treated with 0.9% normal saline, monocrotaline (MCT), spironolactone (SP), or MCT combined with SP. After the rats were sacrificed with an overdose of pentobarbital sodium, hematoxylin and eosin staining was performed to observe the pulmonary artery pathology section. Sirtuin 1 (SIRT1), p53, and p21 protein expression was detect by western blot. Immunofluorescence staining was performed to verify EPCs. EPCs were treated with different concentrations of ALDO. MTT assay and senescence-associated β-galactosidase staining were used to measure cell viability and senescence. RESULTS: MCT increased the vascular arterial wall thickness and wall area, inhibited SIRT1 protein expression and increased p53 and p21 protein expression in the lung tissue of rats, while SP partially reversed this effect. In addition, ALDO inhibited EPCs viability and induced senescence. The expression of p53 and p21 proteins in the EPCs were upregulated and the senescence was accelerated when EPCs were transfected with SIRT1 siRNA. CONCLUSIONS: ALDO promoted EPCs senescence and inhibited EPCs proliferation by downregulating SIRT1, which regulates the p53/p21 pathway, thus promoting PAH.
format Online
Article
Text
id pubmed-7191948
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher International Scientific Literature, Inc.
record_format MEDLINE/PubMed
spelling pubmed-71919482020-05-04 Effect of Aldosterone on Senescence and Proliferation Inhibition of Endothelial Progenitor Cells Induced by Sirtuin 1 (SIRT1) in Pulmonary Arterial Hypertension Wang, Yue Zhong, Bin Wu, Qiyong Tong, Jichun Zhu, Tao Zhang, Ming Med Sci Monit Animal Study BACKGROUND: Pulmonary arterial hypertension (PAH) is characterized by a progressive increase in pulmonary circulatory resistance. Pulmonary vascular endothelial dysfunction is one of the main causes of primary PAH. Endothelial progenitor cells (EPCs) can proliferate and differentiate into vascular endothelial cells and play an important role in maintaining normal endothelial function. Mineralocorticoid receptor inhibitor has been reported to be used in the treatment of PAH. However, the role and the underlying mechanism of aldosterone (ALDO) in PAH remains unclear. MATERIAL/METHODS: Rats were divided to 4 groups (n=10 per group) and treated with 0.9% normal saline, monocrotaline (MCT), spironolactone (SP), or MCT combined with SP. After the rats were sacrificed with an overdose of pentobarbital sodium, hematoxylin and eosin staining was performed to observe the pulmonary artery pathology section. Sirtuin 1 (SIRT1), p53, and p21 protein expression was detect by western blot. Immunofluorescence staining was performed to verify EPCs. EPCs were treated with different concentrations of ALDO. MTT assay and senescence-associated β-galactosidase staining were used to measure cell viability and senescence. RESULTS: MCT increased the vascular arterial wall thickness and wall area, inhibited SIRT1 protein expression and increased p53 and p21 protein expression in the lung tissue of rats, while SP partially reversed this effect. In addition, ALDO inhibited EPCs viability and induced senescence. The expression of p53 and p21 proteins in the EPCs were upregulated and the senescence was accelerated when EPCs were transfected with SIRT1 siRNA. CONCLUSIONS: ALDO promoted EPCs senescence and inhibited EPCs proliferation by downregulating SIRT1, which regulates the p53/p21 pathway, thus promoting PAH. International Scientific Literature, Inc. 2020-04-18 /pmc/articles/PMC7191948/ /pubmed/32303670 http://dx.doi.org/10.12659/MSM.920678 Text en © Med Sci Monit, 2020 This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) )
spellingShingle Animal Study
Wang, Yue
Zhong, Bin
Wu, Qiyong
Tong, Jichun
Zhu, Tao
Zhang, Ming
Effect of Aldosterone on Senescence and Proliferation Inhibition of Endothelial Progenitor Cells Induced by Sirtuin 1 (SIRT1) in Pulmonary Arterial Hypertension
title Effect of Aldosterone on Senescence and Proliferation Inhibition of Endothelial Progenitor Cells Induced by Sirtuin 1 (SIRT1) in Pulmonary Arterial Hypertension
title_full Effect of Aldosterone on Senescence and Proliferation Inhibition of Endothelial Progenitor Cells Induced by Sirtuin 1 (SIRT1) in Pulmonary Arterial Hypertension
title_fullStr Effect of Aldosterone on Senescence and Proliferation Inhibition of Endothelial Progenitor Cells Induced by Sirtuin 1 (SIRT1) in Pulmonary Arterial Hypertension
title_full_unstemmed Effect of Aldosterone on Senescence and Proliferation Inhibition of Endothelial Progenitor Cells Induced by Sirtuin 1 (SIRT1) in Pulmonary Arterial Hypertension
title_short Effect of Aldosterone on Senescence and Proliferation Inhibition of Endothelial Progenitor Cells Induced by Sirtuin 1 (SIRT1) in Pulmonary Arterial Hypertension
title_sort effect of aldosterone on senescence and proliferation inhibition of endothelial progenitor cells induced by sirtuin 1 (sirt1) in pulmonary arterial hypertension
topic Animal Study
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191948/
https://www.ncbi.nlm.nih.gov/pubmed/32303670
http://dx.doi.org/10.12659/MSM.920678
work_keys_str_mv AT wangyue effectofaldosteroneonsenescenceandproliferationinhibitionofendothelialprogenitorcellsinducedbysirtuin1sirt1inpulmonaryarterialhypertension
AT zhongbin effectofaldosteroneonsenescenceandproliferationinhibitionofendothelialprogenitorcellsinducedbysirtuin1sirt1inpulmonaryarterialhypertension
AT wuqiyong effectofaldosteroneonsenescenceandproliferationinhibitionofendothelialprogenitorcellsinducedbysirtuin1sirt1inpulmonaryarterialhypertension
AT tongjichun effectofaldosteroneonsenescenceandproliferationinhibitionofendothelialprogenitorcellsinducedbysirtuin1sirt1inpulmonaryarterialhypertension
AT zhutao effectofaldosteroneonsenescenceandproliferationinhibitionofendothelialprogenitorcellsinducedbysirtuin1sirt1inpulmonaryarterialhypertension
AT zhangming effectofaldosteroneonsenescenceandproliferationinhibitionofendothelialprogenitorcellsinducedbysirtuin1sirt1inpulmonaryarterialhypertension