Cargando…
Exercise Attenuates Brain Aging by Rescuing Down-Regulated Wnt/β-Catenin Signaling in Aged Rats
Down-regulated Wnt signaling is involved in brain aging with declined cognitive capacity due to its modulation on neuronal function and synaptic plasticity. However, the molecular mechanisms are still unclear. In the present study, the naturally aged rat model was established by feeding rats from 6...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192222/ https://www.ncbi.nlm.nih.gov/pubmed/32390823 http://dx.doi.org/10.3389/fnagi.2020.00105 |
_version_ | 1783527976374108160 |
---|---|
author | Chen, Dandan Zhang, Ying Zhang, Meng Chang, Jingru Zeng, Zhenzhong Kou, Xianjuan Chen, Ning |
author_facet | Chen, Dandan Zhang, Ying Zhang, Meng Chang, Jingru Zeng, Zhenzhong Kou, Xianjuan Chen, Ning |
author_sort | Chen, Dandan |
collection | PubMed |
description | Down-regulated Wnt signaling is involved in brain aging with declined cognitive capacity due to its modulation on neuronal function and synaptic plasticity. However, the molecular mechanisms are still unclear. In the present study, the naturally aged rat model was established by feeding rats from 6 months old to 21 months old. The cognitive capacity of aged rats was compared with young rats as the controls and the aged rats upon 12-week exercise interventions including treadmill running, resistance exercise, and alternating exercise with resistance exercise and treadmill running. Wnt signaling was examined in hippocampal tissues of the rats from different groups. Results indicated that the expression of Dickkopf-1 (DKK-1) as an antagonist of Wnt signal pathway, the activation of GSK-3β, and the hyperphosphorylated Tau were markedly increased as the extension of age. Meanwhile, higher p-β-catenin(Ser33, 37, Thr41) promoted neuronal degradation of aged rats. In contrast, three kinds of exercise interventions rescued the abnormal expression of DKK-1 and synaptophysin such as PSD-93 and PSD-95 in hippocampal tissues of the aged rats; especially 12-week treadmill running suppressed DKK-1 up-regulation, GSK-3β activation, β-catenin phosphorylation, and hyperphosphorylated Tau. In addition, the down-regulated PI3K/AKT and Wnt signal pathways were observed in aged rats, but could be reversed by resistance exercise and treadmill running. Moreover, the increased Bax and reduced Bcl-2 levels in hippocampal tissues of aged rats were also reversed upon treadmill running intervention. Taken together, down-regulated Wnt signaling suppressed PI3K/Akt signal pathway, aggravated synaptotoxicity, induced neuron apoptosis, and accelerated cognitive impairment of aged rats. However, exercise interventions, especially treadmill running, can attenuate their brain aging process via restoring Wnt signaling and corresponding targets. |
format | Online Article Text |
id | pubmed-7192222 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-71922222020-05-08 Exercise Attenuates Brain Aging by Rescuing Down-Regulated Wnt/β-Catenin Signaling in Aged Rats Chen, Dandan Zhang, Ying Zhang, Meng Chang, Jingru Zeng, Zhenzhong Kou, Xianjuan Chen, Ning Front Aging Neurosci Neuroscience Down-regulated Wnt signaling is involved in brain aging with declined cognitive capacity due to its modulation on neuronal function and synaptic plasticity. However, the molecular mechanisms are still unclear. In the present study, the naturally aged rat model was established by feeding rats from 6 months old to 21 months old. The cognitive capacity of aged rats was compared with young rats as the controls and the aged rats upon 12-week exercise interventions including treadmill running, resistance exercise, and alternating exercise with resistance exercise and treadmill running. Wnt signaling was examined in hippocampal tissues of the rats from different groups. Results indicated that the expression of Dickkopf-1 (DKK-1) as an antagonist of Wnt signal pathway, the activation of GSK-3β, and the hyperphosphorylated Tau were markedly increased as the extension of age. Meanwhile, higher p-β-catenin(Ser33, 37, Thr41) promoted neuronal degradation of aged rats. In contrast, three kinds of exercise interventions rescued the abnormal expression of DKK-1 and synaptophysin such as PSD-93 and PSD-95 in hippocampal tissues of the aged rats; especially 12-week treadmill running suppressed DKK-1 up-regulation, GSK-3β activation, β-catenin phosphorylation, and hyperphosphorylated Tau. In addition, the down-regulated PI3K/AKT and Wnt signal pathways were observed in aged rats, but could be reversed by resistance exercise and treadmill running. Moreover, the increased Bax and reduced Bcl-2 levels in hippocampal tissues of aged rats were also reversed upon treadmill running intervention. Taken together, down-regulated Wnt signaling suppressed PI3K/Akt signal pathway, aggravated synaptotoxicity, induced neuron apoptosis, and accelerated cognitive impairment of aged rats. However, exercise interventions, especially treadmill running, can attenuate their brain aging process via restoring Wnt signaling and corresponding targets. Frontiers Media S.A. 2020-04-23 /pmc/articles/PMC7192222/ /pubmed/32390823 http://dx.doi.org/10.3389/fnagi.2020.00105 Text en Copyright © 2020 Chen, Zhang, Zhang, Chang, Zeng, Kou and Chen. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Chen, Dandan Zhang, Ying Zhang, Meng Chang, Jingru Zeng, Zhenzhong Kou, Xianjuan Chen, Ning Exercise Attenuates Brain Aging by Rescuing Down-Regulated Wnt/β-Catenin Signaling in Aged Rats |
title | Exercise Attenuates Brain Aging by Rescuing Down-Regulated Wnt/β-Catenin Signaling in Aged Rats |
title_full | Exercise Attenuates Brain Aging by Rescuing Down-Regulated Wnt/β-Catenin Signaling in Aged Rats |
title_fullStr | Exercise Attenuates Brain Aging by Rescuing Down-Regulated Wnt/β-Catenin Signaling in Aged Rats |
title_full_unstemmed | Exercise Attenuates Brain Aging by Rescuing Down-Regulated Wnt/β-Catenin Signaling in Aged Rats |
title_short | Exercise Attenuates Brain Aging by Rescuing Down-Regulated Wnt/β-Catenin Signaling in Aged Rats |
title_sort | exercise attenuates brain aging by rescuing down-regulated wnt/β-catenin signaling in aged rats |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192222/ https://www.ncbi.nlm.nih.gov/pubmed/32390823 http://dx.doi.org/10.3389/fnagi.2020.00105 |
work_keys_str_mv | AT chendandan exerciseattenuatesbrainagingbyrescuingdownregulatedwntbcateninsignalinginagedrats AT zhangying exerciseattenuatesbrainagingbyrescuingdownregulatedwntbcateninsignalinginagedrats AT zhangmeng exerciseattenuatesbrainagingbyrescuingdownregulatedwntbcateninsignalinginagedrats AT changjingru exerciseattenuatesbrainagingbyrescuingdownregulatedwntbcateninsignalinginagedrats AT zengzhenzhong exerciseattenuatesbrainagingbyrescuingdownregulatedwntbcateninsignalinginagedrats AT kouxianjuan exerciseattenuatesbrainagingbyrescuingdownregulatedwntbcateninsignalinginagedrats AT chenning exerciseattenuatesbrainagingbyrescuingdownregulatedwntbcateninsignalinginagedrats |