Cargando…
Deep learning-based auto-segmentation of targets and organs-at-risk for magnetic resonance imaging only planning of prostate radiotherapy
BACKGROUND AND PURPOSE: Magnetic resonance (MR) only radiation therapy for prostate treatment provides superior contrast for defining targets and organs-at-risk (OARs). This study aims to develop a deep learning model to leverage this advantage to automate the contouring process. MATERIALS AND METHO...
Autores principales: | Elguindi, Sharif, Zelefsky, Michael J., Jiang, Jue, Veeraraghavan, Harini, Deasy, Joseph O., Hunt, Margie A., Tyagi, Neelam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192345/ https://www.ncbi.nlm.nih.gov/pubmed/32355894 http://dx.doi.org/10.1016/j.phro.2019.11.006 |
Ejemplares similares
-
Deep learning auto-segmentation and automated treatment planning for trismus risk reduction in head and neck cancer radiotherapy
por: Thor, Maria, et al.
Publicado: (2021) -
Clinical experience and workflow challenges with magnetic resonance-only radiation therapy simulation and planning for prostate cancer
por: Tyagi, Neelam, et al.
Publicado: (2020) -
Clinical workflow for MR-only simulation and planning in prostate
por: Tyagi, Neelam, et al.
Publicado: (2017) -
Dosimetric evaluation of an atlas‐based synthetic CT generation approach for MR‐only radiotherapy of pelvis anatomy
por: Farjam, Reza, et al.
Publicado: (2018) -
Impact of daily soft‐tissue image guidance to prostate on pelvic lymph node (PLN) irradiation for prostate patients receiving SBRT
por: Tyagi, Neelam, et al.
Publicado: (2019)