Cargando…

Understanding biochemical design principles with ensembles of canonical non-linear models

Systems biology applies concepts from engineering in order to understand biological networks. If such an understanding was complete, biologists would be able to design ad hoc biochemical components tailored for different purposes, which is the goal of synthetic biology. Needless to say that we are f...

Descripción completa

Detalles Bibliográficos
Autores principales: Bromig, Lukas, Kremling, Andreas, Marin-Sanguino, Alberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192416/
https://www.ncbi.nlm.nih.gov/pubmed/32353072
http://dx.doi.org/10.1371/journal.pone.0230599
_version_ 1783528003514400768
author Bromig, Lukas
Kremling, Andreas
Marin-Sanguino, Alberto
author_facet Bromig, Lukas
Kremling, Andreas
Marin-Sanguino, Alberto
author_sort Bromig, Lukas
collection PubMed
description Systems biology applies concepts from engineering in order to understand biological networks. If such an understanding was complete, biologists would be able to design ad hoc biochemical components tailored for different purposes, which is the goal of synthetic biology. Needless to say that we are far away from creating biological subsystems as intricate and precise as those found in nature, but mathematical models and high throughput techniques have brought us a long way in this direction. One of the difficulties that still needs to be overcome is finding the right values for model parameters and dealing with uncertainty, which is proving to be an extremely difficult task. In this work, we take advantage of ensemble modeling techniques, where a large number of models with different parameter values are formulated and then tested according to some performance criteria. By finding features shared by successful models, the role of different components and the synergies between them can be better understood. We will address some of the difficulties often faced by ensemble modeling approaches, such as the need to sample a space whose size grows exponentially with the number of parameters, and establishing useful selection criteria. Some methods will be shown to reduce the predictions from many models into a set of understandable “design principles” that can guide us to improve or manufacture a biochemical network. Our proposed framework formulates models within standard formalisms in order to integrate information from different sources and minimize the dimension of the parameter space. Additionally, the mathematical properties of the formalism enable a partition of the parameter space into independent subspaces. Each of these subspaces can be paired with a set of criteria that depend exclusively on it, thus allowing a separate sampling/screening in spaces of lower dimension. By applying tests in a strict order where computationally cheaper tests are applied first to each subspace and applying computationally expensive tests to the remaining subset thereafter, the use of resources is optimized and a larger number of models can be examined. This can be compared to a complex database query where the order of the requests can make a huge difference in the processing time. The method will be illustrated by analyzing a classical model of a metabolic pathway with end-product inhibition. Even for such a simple model, the method provides novel insight.
format Online
Article
Text
id pubmed-7192416
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-71924162020-05-11 Understanding biochemical design principles with ensembles of canonical non-linear models Bromig, Lukas Kremling, Andreas Marin-Sanguino, Alberto PLoS One Research Article Systems biology applies concepts from engineering in order to understand biological networks. If such an understanding was complete, biologists would be able to design ad hoc biochemical components tailored for different purposes, which is the goal of synthetic biology. Needless to say that we are far away from creating biological subsystems as intricate and precise as those found in nature, but mathematical models and high throughput techniques have brought us a long way in this direction. One of the difficulties that still needs to be overcome is finding the right values for model parameters and dealing with uncertainty, which is proving to be an extremely difficult task. In this work, we take advantage of ensemble modeling techniques, where a large number of models with different parameter values are formulated and then tested according to some performance criteria. By finding features shared by successful models, the role of different components and the synergies between them can be better understood. We will address some of the difficulties often faced by ensemble modeling approaches, such as the need to sample a space whose size grows exponentially with the number of parameters, and establishing useful selection criteria. Some methods will be shown to reduce the predictions from many models into a set of understandable “design principles” that can guide us to improve or manufacture a biochemical network. Our proposed framework formulates models within standard formalisms in order to integrate information from different sources and minimize the dimension of the parameter space. Additionally, the mathematical properties of the formalism enable a partition of the parameter space into independent subspaces. Each of these subspaces can be paired with a set of criteria that depend exclusively on it, thus allowing a separate sampling/screening in spaces of lower dimension. By applying tests in a strict order where computationally cheaper tests are applied first to each subspace and applying computationally expensive tests to the remaining subset thereafter, the use of resources is optimized and a larger number of models can be examined. This can be compared to a complex database query where the order of the requests can make a huge difference in the processing time. The method will be illustrated by analyzing a classical model of a metabolic pathway with end-product inhibition. Even for such a simple model, the method provides novel insight. Public Library of Science 2020-04-30 /pmc/articles/PMC7192416/ /pubmed/32353072 http://dx.doi.org/10.1371/journal.pone.0230599 Text en © 2020 Bromig et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Bromig, Lukas
Kremling, Andreas
Marin-Sanguino, Alberto
Understanding biochemical design principles with ensembles of canonical non-linear models
title Understanding biochemical design principles with ensembles of canonical non-linear models
title_full Understanding biochemical design principles with ensembles of canonical non-linear models
title_fullStr Understanding biochemical design principles with ensembles of canonical non-linear models
title_full_unstemmed Understanding biochemical design principles with ensembles of canonical non-linear models
title_short Understanding biochemical design principles with ensembles of canonical non-linear models
title_sort understanding biochemical design principles with ensembles of canonical non-linear models
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192416/
https://www.ncbi.nlm.nih.gov/pubmed/32353072
http://dx.doi.org/10.1371/journal.pone.0230599
work_keys_str_mv AT bromiglukas understandingbiochemicaldesignprincipleswithensemblesofcanonicalnonlinearmodels
AT kremlingandreas understandingbiochemicaldesignprincipleswithensemblesofcanonicalnonlinearmodels
AT marinsanguinoalberto understandingbiochemicaldesignprincipleswithensemblesofcanonicalnonlinearmodels