Cargando…
Sequence count data are poorly fit by the negative binomial distribution
Sequence count data are commonly modelled using the negative binomial (NB) distribution. Several empirical studies, however, have demonstrated that methods based on the NB-assumption do not always succeed in controlling the false discovery rate (FDR) at its nominal level. In this paper, we propose a...
Autores principales: | Hawinkel, Stijn, Rayner, J. C. W., Bijnens, Luc, Thas, Olivier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192467/ https://www.ncbi.nlm.nih.gov/pubmed/32352970 http://dx.doi.org/10.1371/journal.pone.0224909 |
Ejemplares similares
-
A unified framework for unconstrained and constrained ordination of microbiome read count data
por: Hawinkel, Stijn, et al.
Publicado: (2019) -
Model-based joint visualization of multiple compositional omics datasets
por: Hawinkel, Stijn, et al.
Publicado: (2020) -
Some thoughts on the negative binomial count distribution and correlations
por: Carruthers, Peter A
Publicado: (1994) -
Applying Negative Binomial Distribution in Diagnostic Classification
Models for Analyzing Count Data
por: Liu, Ren, et al.
Publicado: (2022) -
A personal recollection of count statistics and especially the negative binomial distribution
por: Carruthers, Peter A
Publicado: (1994)