Cargando…

Adapting Biased Gene Conversion theory to account for intensive GC-content deterioration in the human genome by novel mutations

We examined seventy million well-characterized human mutations, and their impact on G+C-compositional dynamics, in order to understand the formation and maintenance of major genomic nucleotide sequence patterns. Among novel mutations, those that change a strong (S) base pair G:C/C:G to a weak (W) pa...

Descripción completa

Detalles Bibliográficos
Autores principales: Paudel, Rajan, Fedorova, Larisa, Fedorov, Alexei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192473/
https://www.ncbi.nlm.nih.gov/pubmed/32353016
http://dx.doi.org/10.1371/journal.pone.0232167
_version_ 1783528016769449984
author Paudel, Rajan
Fedorova, Larisa
Fedorov, Alexei
author_facet Paudel, Rajan
Fedorova, Larisa
Fedorov, Alexei
author_sort Paudel, Rajan
collection PubMed
description We examined seventy million well-characterized human mutations, and their impact on G+C-compositional dynamics, in order to understand the formation and maintenance of major genomic nucleotide sequence patterns. Among novel mutations, those that change a strong (S) base pair G:C/C:G to a weak (W) pair A:T/T:A occur at nearly twice the frequency of the opposite mutations. Such imbalance puts strong downward pressure on overall GC-content. However, along protracted paths to fixation, S→W mutations are much less likely to propagate than W→S mutations. The magnitude of relative propagation disadvantages for S→W mutations is inexplicable by any currently-accepted model. This fact forced us to re-examine the quantitative features of Biased Gene Conversion (BGC) theory. Revised parameters of BGC that, per average individual, convert 7–14 W base pairs into S pairs, would account for the S-content turnover differences between new and old mutations, and make BGC an instrumental force for nucleotide dynamics and evolution. BGC should thus be considered seriously in both theories and biomedical practice. In particular, BGC should be taken into account during allele imputations, where missing SNP alleles are computationally predicted based on the information about several neighboring alleles. Finally, we analyzed the effect of neighboring nucleotide context on the mutation frequencies, dynamics, and GC-composition turnover. For this purpose, we examined genomic regions having extremely biased nucleotide compositions (enriched for S-, W-, purine/pyrimidine strand asymmetry, or AC/GT-strand asymmetry). It was found that point mutations in these regions preferentially degrade the nucleotide inhomogeneities, decreasing the sequence biases. Degradation of sequence bias is highest for novel mutations, and considerably lower for older mutations (those widespread across populations). Besides BGC, there may be additional, still uncharacterized molecular mechanisms that either preserve genomic regions with biased nucleotide compositions from mutational degradation or fail to degrade such inhomogeneities in specific chromosomal regions.
format Online
Article
Text
id pubmed-7192473
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-71924732020-05-11 Adapting Biased Gene Conversion theory to account for intensive GC-content deterioration in the human genome by novel mutations Paudel, Rajan Fedorova, Larisa Fedorov, Alexei PLoS One Research Article We examined seventy million well-characterized human mutations, and their impact on G+C-compositional dynamics, in order to understand the formation and maintenance of major genomic nucleotide sequence patterns. Among novel mutations, those that change a strong (S) base pair G:C/C:G to a weak (W) pair A:T/T:A occur at nearly twice the frequency of the opposite mutations. Such imbalance puts strong downward pressure on overall GC-content. However, along protracted paths to fixation, S→W mutations are much less likely to propagate than W→S mutations. The magnitude of relative propagation disadvantages for S→W mutations is inexplicable by any currently-accepted model. This fact forced us to re-examine the quantitative features of Biased Gene Conversion (BGC) theory. Revised parameters of BGC that, per average individual, convert 7–14 W base pairs into S pairs, would account for the S-content turnover differences between new and old mutations, and make BGC an instrumental force for nucleotide dynamics and evolution. BGC should thus be considered seriously in both theories and biomedical practice. In particular, BGC should be taken into account during allele imputations, where missing SNP alleles are computationally predicted based on the information about several neighboring alleles. Finally, we analyzed the effect of neighboring nucleotide context on the mutation frequencies, dynamics, and GC-composition turnover. For this purpose, we examined genomic regions having extremely biased nucleotide compositions (enriched for S-, W-, purine/pyrimidine strand asymmetry, or AC/GT-strand asymmetry). It was found that point mutations in these regions preferentially degrade the nucleotide inhomogeneities, decreasing the sequence biases. Degradation of sequence bias is highest for novel mutations, and considerably lower for older mutations (those widespread across populations). Besides BGC, there may be additional, still uncharacterized molecular mechanisms that either preserve genomic regions with biased nucleotide compositions from mutational degradation or fail to degrade such inhomogeneities in specific chromosomal regions. Public Library of Science 2020-04-30 /pmc/articles/PMC7192473/ /pubmed/32353016 http://dx.doi.org/10.1371/journal.pone.0232167 Text en © 2020 Paudel et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Paudel, Rajan
Fedorova, Larisa
Fedorov, Alexei
Adapting Biased Gene Conversion theory to account for intensive GC-content deterioration in the human genome by novel mutations
title Adapting Biased Gene Conversion theory to account for intensive GC-content deterioration in the human genome by novel mutations
title_full Adapting Biased Gene Conversion theory to account for intensive GC-content deterioration in the human genome by novel mutations
title_fullStr Adapting Biased Gene Conversion theory to account for intensive GC-content deterioration in the human genome by novel mutations
title_full_unstemmed Adapting Biased Gene Conversion theory to account for intensive GC-content deterioration in the human genome by novel mutations
title_short Adapting Biased Gene Conversion theory to account for intensive GC-content deterioration in the human genome by novel mutations
title_sort adapting biased gene conversion theory to account for intensive gc-content deterioration in the human genome by novel mutations
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192473/
https://www.ncbi.nlm.nih.gov/pubmed/32353016
http://dx.doi.org/10.1371/journal.pone.0232167
work_keys_str_mv AT paudelrajan adaptingbiasedgeneconversiontheorytoaccountforintensivegccontentdeteriorationinthehumangenomebynovelmutations
AT fedorovalarisa adaptingbiasedgeneconversiontheorytoaccountforintensivegccontentdeteriorationinthehumangenomebynovelmutations
AT fedorovalexei adaptingbiasedgeneconversiontheorytoaccountforintensivegccontentdeteriorationinthehumangenomebynovelmutations