Cargando…
Adapting Biased Gene Conversion theory to account for intensive GC-content deterioration in the human genome by novel mutations
We examined seventy million well-characterized human mutations, and their impact on G+C-compositional dynamics, in order to understand the formation and maintenance of major genomic nucleotide sequence patterns. Among novel mutations, those that change a strong (S) base pair G:C/C:G to a weak (W) pa...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192473/ https://www.ncbi.nlm.nih.gov/pubmed/32353016 http://dx.doi.org/10.1371/journal.pone.0232167 |
_version_ | 1783528016769449984 |
---|---|
author | Paudel, Rajan Fedorova, Larisa Fedorov, Alexei |
author_facet | Paudel, Rajan Fedorova, Larisa Fedorov, Alexei |
author_sort | Paudel, Rajan |
collection | PubMed |
description | We examined seventy million well-characterized human mutations, and their impact on G+C-compositional dynamics, in order to understand the formation and maintenance of major genomic nucleotide sequence patterns. Among novel mutations, those that change a strong (S) base pair G:C/C:G to a weak (W) pair A:T/T:A occur at nearly twice the frequency of the opposite mutations. Such imbalance puts strong downward pressure on overall GC-content. However, along protracted paths to fixation, S→W mutations are much less likely to propagate than W→S mutations. The magnitude of relative propagation disadvantages for S→W mutations is inexplicable by any currently-accepted model. This fact forced us to re-examine the quantitative features of Biased Gene Conversion (BGC) theory. Revised parameters of BGC that, per average individual, convert 7–14 W base pairs into S pairs, would account for the S-content turnover differences between new and old mutations, and make BGC an instrumental force for nucleotide dynamics and evolution. BGC should thus be considered seriously in both theories and biomedical practice. In particular, BGC should be taken into account during allele imputations, where missing SNP alleles are computationally predicted based on the information about several neighboring alleles. Finally, we analyzed the effect of neighboring nucleotide context on the mutation frequencies, dynamics, and GC-composition turnover. For this purpose, we examined genomic regions having extremely biased nucleotide compositions (enriched for S-, W-, purine/pyrimidine strand asymmetry, or AC/GT-strand asymmetry). It was found that point mutations in these regions preferentially degrade the nucleotide inhomogeneities, decreasing the sequence biases. Degradation of sequence bias is highest for novel mutations, and considerably lower for older mutations (those widespread across populations). Besides BGC, there may be additional, still uncharacterized molecular mechanisms that either preserve genomic regions with biased nucleotide compositions from mutational degradation or fail to degrade such inhomogeneities in specific chromosomal regions. |
format | Online Article Text |
id | pubmed-7192473 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-71924732020-05-11 Adapting Biased Gene Conversion theory to account for intensive GC-content deterioration in the human genome by novel mutations Paudel, Rajan Fedorova, Larisa Fedorov, Alexei PLoS One Research Article We examined seventy million well-characterized human mutations, and their impact on G+C-compositional dynamics, in order to understand the formation and maintenance of major genomic nucleotide sequence patterns. Among novel mutations, those that change a strong (S) base pair G:C/C:G to a weak (W) pair A:T/T:A occur at nearly twice the frequency of the opposite mutations. Such imbalance puts strong downward pressure on overall GC-content. However, along protracted paths to fixation, S→W mutations are much less likely to propagate than W→S mutations. The magnitude of relative propagation disadvantages for S→W mutations is inexplicable by any currently-accepted model. This fact forced us to re-examine the quantitative features of Biased Gene Conversion (BGC) theory. Revised parameters of BGC that, per average individual, convert 7–14 W base pairs into S pairs, would account for the S-content turnover differences between new and old mutations, and make BGC an instrumental force for nucleotide dynamics and evolution. BGC should thus be considered seriously in both theories and biomedical practice. In particular, BGC should be taken into account during allele imputations, where missing SNP alleles are computationally predicted based on the information about several neighboring alleles. Finally, we analyzed the effect of neighboring nucleotide context on the mutation frequencies, dynamics, and GC-composition turnover. For this purpose, we examined genomic regions having extremely biased nucleotide compositions (enriched for S-, W-, purine/pyrimidine strand asymmetry, or AC/GT-strand asymmetry). It was found that point mutations in these regions preferentially degrade the nucleotide inhomogeneities, decreasing the sequence biases. Degradation of sequence bias is highest for novel mutations, and considerably lower for older mutations (those widespread across populations). Besides BGC, there may be additional, still uncharacterized molecular mechanisms that either preserve genomic regions with biased nucleotide compositions from mutational degradation or fail to degrade such inhomogeneities in specific chromosomal regions. Public Library of Science 2020-04-30 /pmc/articles/PMC7192473/ /pubmed/32353016 http://dx.doi.org/10.1371/journal.pone.0232167 Text en © 2020 Paudel et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Paudel, Rajan Fedorova, Larisa Fedorov, Alexei Adapting Biased Gene Conversion theory to account for intensive GC-content deterioration in the human genome by novel mutations |
title | Adapting Biased Gene Conversion theory to account for intensive GC-content deterioration in the human genome by novel mutations |
title_full | Adapting Biased Gene Conversion theory to account for intensive GC-content deterioration in the human genome by novel mutations |
title_fullStr | Adapting Biased Gene Conversion theory to account for intensive GC-content deterioration in the human genome by novel mutations |
title_full_unstemmed | Adapting Biased Gene Conversion theory to account for intensive GC-content deterioration in the human genome by novel mutations |
title_short | Adapting Biased Gene Conversion theory to account for intensive GC-content deterioration in the human genome by novel mutations |
title_sort | adapting biased gene conversion theory to account for intensive gc-content deterioration in the human genome by novel mutations |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192473/ https://www.ncbi.nlm.nih.gov/pubmed/32353016 http://dx.doi.org/10.1371/journal.pone.0232167 |
work_keys_str_mv | AT paudelrajan adaptingbiasedgeneconversiontheorytoaccountforintensivegccontentdeteriorationinthehumangenomebynovelmutations AT fedorovalarisa adaptingbiasedgeneconversiontheorytoaccountforintensivegccontentdeteriorationinthehumangenomebynovelmutations AT fedorovalexei adaptingbiasedgeneconversiontheorytoaccountforintensivegccontentdeteriorationinthehumangenomebynovelmutations |