Cargando…

A semi-automated machine-learning based workflow for ellipsoid zone analysis in eyes with macular edema: SCORE2 pilot study

BACKGROUND AND OBJECTIVE: To develop a semi-automated, machine-learning based workflow to evaluate the ellipsoid zone (EZ) assessed by spectral domain optical coherence tomography (SD-OCT) in eyes with macular edema secondary to central retinal or hemi-retinal vein occlusion in SCORE2 treated with a...

Descripción completa

Detalles Bibliográficos
Autores principales: Etheridge, Tyler, Dobson, Ellen T. A., Wiedenmann, Marcel, Papudesu, Chandana, Scott, Ingrid U., Ip, Michael S., Eliceiri, Kevin W., Blodi, Barbara A., Domalpally, Amitha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192485/
https://www.ncbi.nlm.nih.gov/pubmed/32353052
http://dx.doi.org/10.1371/journal.pone.0232494
Descripción
Sumario:BACKGROUND AND OBJECTIVE: To develop a semi-automated, machine-learning based workflow to evaluate the ellipsoid zone (EZ) assessed by spectral domain optical coherence tomography (SD-OCT) in eyes with macular edema secondary to central retinal or hemi-retinal vein occlusion in SCORE2 treated with anti-vascular endothelial growth factor agents. METHODS: SD-OCT macular volume scans of a randomly selected subset of 75 SCORE2 study eyes were converted to the Digital Imaging and Communications in Medicine (DICOM) format, and the EZ layer was segmented using nonproprietary software. Segmented layer coordinates were exported and used to generate en face EZ thickness maps. Within the central subfield, the area of EZ defect was measured using manual and semi-automated approaches via a customized workflow in the open-source data analytics platform, Konstanz Information Miner (KNIME). RESULTS: A total of 184 volume scans from 74 study eyes were analyzed. The mean±SD area of EZ defect was similar between manual (0.19±0.22 mm(2)) and semi-automated measurements (0.19±0.21 mm(2), p = 0.93; intra-class correlation coefficient = 0.90; average bias = 0.01, 95% confidence interval of limits of agreement -0.18–0.20). CONCLUSIONS: A customized workflow generated via an open-source data analytics platform that applied machine-learning methods demonstrated reliable measurements of EZ area defect from en face thickness maps. The result of our semi-automated approach were comparable to manual measurements.