Cargando…
Expression of quasi-equivalence and capsid dimorphism in the Hepadnaviridae
Hepatitis B virus (HBV) is a leading cause of liver disease. The capsid is an essential component of the virion and it is therefore of interest how it assembles and disassembles. The capsid protein is unusual both for its rare fold and that it polymerizes according to two different icosahedral symme...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192502/ https://www.ncbi.nlm.nih.gov/pubmed/32310951 http://dx.doi.org/10.1371/journal.pcbi.1007782 |
_version_ | 1783528023410081792 |
---|---|
author | Wu, Weimin Watts, Norman R. Cheng, Naiqian Huang, Rick Steven, Alasdair C. Wingfield, Paul T. |
author_facet | Wu, Weimin Watts, Norman R. Cheng, Naiqian Huang, Rick Steven, Alasdair C. Wingfield, Paul T. |
author_sort | Wu, Weimin |
collection | PubMed |
description | Hepatitis B virus (HBV) is a leading cause of liver disease. The capsid is an essential component of the virion and it is therefore of interest how it assembles and disassembles. The capsid protein is unusual both for its rare fold and that it polymerizes according to two different icosahedral symmetries, causing the polypeptide chain to exist in seven quasi-equivalent environments: A, B, and C in AB and CC dimers in T = 3 capsids, and A, B, C, and D in AB and CD dimers in T = 4 capsids. We have compared the two capsids by cryo-EM at 3.5 Å resolution. To ensure a valid comparison, the two capsids were prepared and imaged under identical conditions. We find that the chains have different conformations and potential energies, with the T = 3 C chain having the lowest. Three of the four quasi-equivalent dimers are asymmetric with respect to conformation and potential energy; however, the T = 3 CC dimer is symmetrical and has the lowest potential energy although its intra-dimer interface has the least free energy of formation. Of all the inter-dimer interfaces, the CB interface has the least area and free energy, in both capsids. From the calculated energies of higher-order groupings of dimers discernible in the lattices we predict early assembly intermediates, and indeed we observe such structures by negative stain EM of in vitro assembly reactions. By sequence analysis and computational alanine scanning we identify key residues and motifs involved in capsid assembly. Our results explain several previously reported observations on capsid assembly, disassembly, and dimorphism. |
format | Online Article Text |
id | pubmed-7192502 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-71925022020-05-11 Expression of quasi-equivalence and capsid dimorphism in the Hepadnaviridae Wu, Weimin Watts, Norman R. Cheng, Naiqian Huang, Rick Steven, Alasdair C. Wingfield, Paul T. PLoS Comput Biol Research Article Hepatitis B virus (HBV) is a leading cause of liver disease. The capsid is an essential component of the virion and it is therefore of interest how it assembles and disassembles. The capsid protein is unusual both for its rare fold and that it polymerizes according to two different icosahedral symmetries, causing the polypeptide chain to exist in seven quasi-equivalent environments: A, B, and C in AB and CC dimers in T = 3 capsids, and A, B, C, and D in AB and CD dimers in T = 4 capsids. We have compared the two capsids by cryo-EM at 3.5 Å resolution. To ensure a valid comparison, the two capsids were prepared and imaged under identical conditions. We find that the chains have different conformations and potential energies, with the T = 3 C chain having the lowest. Three of the four quasi-equivalent dimers are asymmetric with respect to conformation and potential energy; however, the T = 3 CC dimer is symmetrical and has the lowest potential energy although its intra-dimer interface has the least free energy of formation. Of all the inter-dimer interfaces, the CB interface has the least area and free energy, in both capsids. From the calculated energies of higher-order groupings of dimers discernible in the lattices we predict early assembly intermediates, and indeed we observe such structures by negative stain EM of in vitro assembly reactions. By sequence analysis and computational alanine scanning we identify key residues and motifs involved in capsid assembly. Our results explain several previously reported observations on capsid assembly, disassembly, and dimorphism. Public Library of Science 2020-04-20 /pmc/articles/PMC7192502/ /pubmed/32310951 http://dx.doi.org/10.1371/journal.pcbi.1007782 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication. |
spellingShingle | Research Article Wu, Weimin Watts, Norman R. Cheng, Naiqian Huang, Rick Steven, Alasdair C. Wingfield, Paul T. Expression of quasi-equivalence and capsid dimorphism in the Hepadnaviridae |
title | Expression of quasi-equivalence and capsid dimorphism in the Hepadnaviridae |
title_full | Expression of quasi-equivalence and capsid dimorphism in the Hepadnaviridae |
title_fullStr | Expression of quasi-equivalence and capsid dimorphism in the Hepadnaviridae |
title_full_unstemmed | Expression of quasi-equivalence and capsid dimorphism in the Hepadnaviridae |
title_short | Expression of quasi-equivalence and capsid dimorphism in the Hepadnaviridae |
title_sort | expression of quasi-equivalence and capsid dimorphism in the hepadnaviridae |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192502/ https://www.ncbi.nlm.nih.gov/pubmed/32310951 http://dx.doi.org/10.1371/journal.pcbi.1007782 |
work_keys_str_mv | AT wuweimin expressionofquasiequivalenceandcapsiddimorphisminthehepadnaviridae AT wattsnormanr expressionofquasiequivalenceandcapsiddimorphisminthehepadnaviridae AT chengnaiqian expressionofquasiequivalenceandcapsiddimorphisminthehepadnaviridae AT huangrick expressionofquasiequivalenceandcapsiddimorphisminthehepadnaviridae AT stevenalasdairc expressionofquasiequivalenceandcapsiddimorphisminthehepadnaviridae AT wingfieldpault expressionofquasiequivalenceandcapsiddimorphisminthehepadnaviridae |